About the Properties of a Modified Generalized Beverton-Holt Equation in Ecology Models
暂无分享,去创建一个
[1] M. De la Sen,et al. The environment carrying capacity is not independent of the intrinsic growth rate for subcritical spawning stock biomass in the Beverton–Holt equation , 2007 .
[2] Manuel de la Sen. Parameter dependent Lyapunov functions for robust stability of time-varying linear systems under point delays , 2006, Appl. Math. Comput..
[3] Elena Braverman,et al. On Impulsive Beverton-Holt Difference Equations and their Applications , 2004 .
[4] Jim M Cushing,et al. A Periodically Forced Beverton-Holt Equation , 2002 .
[5] V. Kocić,et al. A note on the nonautonomous Beverton-Holt model , 2005 .
[6] Lansun Chen,et al. Profitless delays for a nonautonomous Lotka-Volterra predator-prey almost periodic system with dispersion , 2007, Appl. Math. Comput..
[7] I. Ozturk,et al. On the recursive sequence yn+1 = (alpha+yn-1)/(beta+yn) + yn-1/yn , 2007, Appl. Math. Comput..
[8] Saber Elaydi,et al. Global stability of periodic orbits of non-autonomous difference equations and population biology , 2003 .
[9] N. Luo,et al. State feedback sliding mode control of a class of uncertain time delay systems , 1993 .
[10] I. Ozturk,et al. On the difference equation yn+1=(alpha + beta e-yn) / (gamma + yn-1) , 2006, Appl. Math. Comput..
[11] M. Hattori,et al. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.
[12] Stevo Stević,et al. On the Recursive Sequence xn+1=A+xnp/xn−1p , 2007 .
[13] H. El-Metwally,et al. On the Difference equation xn+ = axn - bxn/(cxx - dxn-1) , 2006 .
[14] M. De la Sen,et al. Model matching via multirate sampling with fast sampled input guaranteeing the stability of the plant zeros : extensions to adaptive control , 2007 .
[15] Stevo Stević,et al. A short proof of the Cushing-Henson conjecture , 2006 .
[16] Robert J. Sacker,et al. Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures , 2005 .
[17] Shandelle M. Henson,et al. Global Dynamics of Some Periodically Forced, Monotone Difference Equations , 2001 .
[18] Tao Xu,et al. Estimation of parameters in carbon sequestration models from net ecosystem exchange data , 2006, Appl. Math. Comput..
[19] R. Levins,et al. On the difference equation xn+1=α+βxn−1e−xn , 2001 .
[20] Sandip Banerjee,et al. Time lags can control algal bloom in two harmful phytoplankton-zooplankton system , 2007, Appl. Math. Comput..
[21] Saber Elaydi,et al. Periodic difference equations, population biology and the Cushing-Henson conjectures. , 2006, Mathematical biosciences.
[22] H. M. El-Owaidy,et al. On the recursive sequences xn+1=-αxn-1/β±xn , 2003, Appl. Math. Comput..
[23] Manuel de la Sen. Robust stable pole-placement adaptive control of linear systems with multiestimation , 2006, Appl. Math. Comput..
[24] G. Ladas,et al. On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .
[25] M. De la Sen,et al. Robust stabilization of a class of polytopic linear time-varying continuous systems under point delays and saturating controls , 2006, Appl. Math. Comput..
[26] Fengde Chen,et al. Global attractivity in an almost periodic multi-species nonlinear ecological model , 2006, Appl. Math. Comput..
[27] E. Camouzis,et al. Periodically forced Pielou's equation , 2007 .