Analysis of iterative methods in PageRank computation

Abstract PageRank is one of the basic metric used in web search technology to rank the web pages. It uses power method to compute principal eigenvector of the web matrix of several billion nodes. PageRank method incorporates a parameter α called damping factor that plays a major role in PageRank computation. In this study, we have observed experimentally the efficiency of various iterative methods on hyperlink graph for different value of α. We conclude from experiment that Power method is effective and more competitive for the well condition problem i.e. small value of α. However, for α → 1 Power method becomes more complex, and other methods such as Aitken-Power, SOR, and Gauss-Seidel are more efficient than it in respect of CPU time as well as the number of iteration needed for convergence.

[1]  Gene H. Golub,et al.  Exploiting the Block Structure of the Web for Computing , 2003 .

[2]  Pavel Berkhin,et al.  A Survey on PageRank Computing , 2005, Internet Math..

[3]  Gianna M. Del Corso,et al.  Fast PageRank Computation via a Sparse Linear System , 2005, Internet Math..

[4]  Xueyuan Tan,et al.  A new extrapolation method for PageRank computations , 2017, J. Comput. Appl. Math..

[5]  Taher H. Haveliwala,et al.  Adaptive methods for the computation of PageRank , 2004 .

[6]  Qi Gao,et al.  C-Rank——Core algorithm of enterprises search engine in manufacturing industry chain based on ASP , 2016 .

[7]  G. Tzavelas,et al.  Stationary policies with Markov partition property , 2010 .

[8]  Ramesh C. Poonia,et al.  Bridging approaches to reduce the gap between classical and quantum computing , 2016 .

[9]  Michael Brinkmeier,et al.  PageRank revisited , 2006, TOIT.

[10]  Fei Xie,et al.  A two-step matrix splitting iteration for computing PageRank , 2015, J. Comput. Appl. Math..

[11]  Amy Nicole Langville,et al.  Updating pagerank with iterative aggregation , 2004, WWW Alt. '04.

[12]  M. Rachidi,et al.  Approximation of some linear recursive sequences and applications , 2005 .

[13]  Sebastiano Vigna,et al.  PageRank as a function of the damping factor , 2005, WWW '05.

[14]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[15]  Yimin Wei,et al.  A note on the PageRank algorithm , 2006, Appl. Math. Comput..

[16]  Shaozhi Ye,et al.  Distributed PageRank computation based on iterative aggregation-disaggregation methods , 2005, CIKM '05.

[17]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[18]  Hwai-Hui Fu,et al.  Quality of search engines: how good is Google pagerank? , 2010 .

[19]  Stefano Serra Capizzano Jordan Canonical Form of the Google Matrix: A Potential Contribution to the PageRank Computation , 2005, SIAM J. Matrix Anal. Appl..

[20]  Amy Nicole Langville,et al.  A Reordering for the PageRank Problem , 2005, SIAM J. Sci. Comput..

[21]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[22]  Claude Brezinski,et al.  Extrapolation methods for PageRank computations , 2005 .

[23]  Gang Wu,et al.  An Arnoldi-Extrapolation algorithm for computing PageRank , 2010, J. Comput. Appl. Math..