A closer look at the spur, blob, wiggle, and gaps in GD-1

The GD-1 stream is one of the longest and coldest stellar streams discovered to date, and one of the best objects for constraining the dark matter properties of the Milky Way. Using data from Gaia DR2, we study the proper motions (PMs), distance, morphology, and density of the stream to uncover small-scale perturbations. The PM cleaned data show a clear distance gradient across the stream, ranging from 7 to 12 kpc. However, unlike earlier studies that found a continuous gradient, we uncover a distance minimum at φ1 ≈ −40 deg, after which the distance increases again. We can reliably trace the stream between −85 < φ1 <15 deg, showing an even further extent to GD-1 beyond the earlier extension of Price-Whelan and Bonaca. We constrain the stream track and density using a Boolean matched filter approach and find three large under densities and significant residuals in the stream track lining up with these gaps. The gaps are located at φ1 = −36, −20, and −3 deg, with the gap at −3 deg being surrounded by a clear sinusoidal wiggle. We argue that this wiggle is due to a perturbation since it has the wrong orientation to come from a progenitor. We compute a total initial stellar mass of the stream segment of 1.58 ± 0.07 × 104 M⊙. With the extended view of the spur in this work, we argue that the spur may be unrelated to the adjacent gap in the stream. Finally, we show that an interaction with the Sagittarius dwarf can create features similar to the spur.

[1]  M. Takahashi,et al.  Properties of Trans-fast Magnetosonic Jets in Black Hole Magnetospheres , 2020, The Astrophysical Journal.

[2]  Benjamin D. Johnson,et al.  High-resolution Spectroscopy of the GD-1 Stellar Stream Localizes the Perturber near the Orbital Plane of Sagittarius , 2020, The Astrophysical Journal.

[3]  V. Belokurov,et al.  Limit on the LMC mass from a census of its satellites , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  M. Giersz,et al.  MOCCA-SURVEY Database I: Dissolution of tidally filling star clusters harboring black hole subsystem , 2019, Proceedings of the International Astronomical Union.

[5]  Cambridge,et al.  Evidence for two early accretion events that built the Milky Way stellar halo , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  Katherine Freese,et al.  Butterfly in a Cocoon, Understanding the Origin and Morphology of Globular Cluster Streams: The Case of GD-1 , 2019, The Astrophysical Journal.

[7]  L. Watkins,et al.  Hunting for the Dark Matter Wake Induced by the Large Magellanic Cloud , 2019, The Astrophysical Journal.

[8]  R. Carlberg Milky Way Halo Vibrations and Incommensurate Stream Velocities , 2019, The Astrophysical Journal.

[9]  N. Martin,et al.  The Streams of the Gaping Abyss: A Population of Entangled Stellar Streams Surrounding the Inner Galaxy , 2019, The Astrophysical Journal.

[10]  Sergey E. Koposov,et al.  The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  Sergey E. Koposov,et al.  Piercing the Milky Way: an all-sky view of the Orphan Stream , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  R. Carlberg,et al.  The Density Structure of Simulated Stellar Streams , 2018, The Astrophysical Journal.

[13]  J. Bovy,et al.  Searching for the GD-1 stream progenitor inGaiaDR2 with directN-body simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  Adrian M. Price-Whelan,et al.  The Spur and the Gap in GD-1: Dynamical Evidence for a Dark Substructure in the Milky Way Halo , 2018, The Astrophysical Journal.

[15]  J. Bovy,et al.  Effects of baryonic and dark matter substructure on the Pal 5 stream , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  E. Vasiliev Proper motions and dynamics of the Milky Way globular cluster system fromGaiaDR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  N. Martin,et al.  Phlegethon, a Nearby 75°-long Retrograde Stellar Stream , 2018, The Astrophysical Journal.

[18]  Adrian M. Price-Whelan,et al.  Off the Beaten Path: Gaia Reveals GD-1 Stars outside of the Main Stream , 2018, The Astrophysical Journal.

[19]  N. Martin,et al.  Ghostly tributaries to the Milky Way: charting the halo’s stellar streams with the Gaia DR2 catalogue , 2018, Monthly Notices of the Royal Astronomical Society.

[20]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[21]  A. Helmi,et al.  Gaia Data Release 2Kinematics of globular clusters and dwarfgalaxies around the Milky Way , 2018, 1804.09381.

[22]  E. Vasiliev AGAMA: action-based galaxy modelling architecture , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  Sergey E. Koposov,et al.  A deeper look at the GD1 stream: density variations and wiggles , 2018, 1801.08948.

[24]  R. Nichol,et al.  Stellar Streams Discovered in the Dark Energy Survey , 2018, The Astrophysical Journal.

[25]  University of Surrey,et al.  Fourteen candidate RR Lyrae star streams in the inner Galaxy , 2017, 1711.03967.

[26]  A. Price-Whelan,et al.  Gaps and length asymmetry in the stellar stream Palomar 5 as effects of Galactic bar rotation , 2017, 1703.04627.

[27]  E. Balbinot,et al.  The devil is in the tails: the role of globular cluster mass evolution on stream properties , 2017, 1702.02543.

[28]  L. Girardi,et al.  A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE , 2017, 1701.08510.

[29]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[30]  Sergey E. Koposov,et al.  A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique , 2016, Monthly Notices of the Royal Astronomical Society.

[31]  J. Bovy,et al.  THE SHAPE OF THE INNER MILKY WAY HALO FROM OBSERVATIONS OF THE PAL 5 AND GD–1 STELLAR STREAMS , 2016, 1609.01298.

[32]  P. McMillan,et al.  The mass distribution and gravitational potential of the Milky Way , 2016, 1608.00971.

[33]  H. Rix,et al.  A Synoptic Map of Halo Substructures from the Pan-STARRS1 3π Survey , 2016, 1607.06088.

[34]  J. Bovy,et al.  The number and size of subhalo-induced gaps in stellar streams , 2016, 1606.04946.

[35]  J. Bovy,et al.  Linear perturbation theory for tidal streams and the small-scale CDM power spectrum , 2016, 1606.03470.

[36]  S. White,et al.  Gaps in globular cluster streams: giant molecular clouds can cause them too , 2016, 1606.02715.

[37]  Jeffrey L. Carlin,et al.  Stellar Streams and Clouds in the Galactic Halo , 2016, 1603.08936.

[38]  V. Belokurov,et al.  A Magellanic origin of the DES dwarfs , 2016, 1603.04420.

[39]  H. Rix,et al.  SPENDING TOO MUCH TIME AT THE GALACTIC BAR: CHAOTIC FANNING OF THE OPHIUCHUS STREAM , 2016, 1601.06790.

[40]  D. Erkal,et al.  Shepherding tidal debris with the Galactic bar: the Ophiuchus stream , 2015, 1512.04536.

[41]  J. Bovy Detecting the Disruption of Dark-Matter Halos with Stellar Streams. , 2015, Physical review letters.

[42]  J. Bovy,et al.  Dynamics of stream–subhalo interactions , 2015, 1510.03426.

[43]  V. Belokurov,et al.  Properties of dark subhaloes from gaps in tidal streams , 2015, 1507.05625.

[44]  University of Cambridge,et al.  The VLT Survey Telescope ATLAS , 2015, 1502.05432.

[45]  D. Hogg,et al.  GLOBULAR CLUSTER STREAMS AS GALACTIC HIGH-PRECISION SCALES—THE POSTER CHILD PALOMAR 5 , 2015, Proceedings of the International Astronomical Union.

[46]  V. Belokurov,et al.  Dipping our toes in the water: first models of GD-1 as a stream , 2015, 1502.00484.

[47]  V. Belokurov,et al.  Forensics of Subhalo-Stream Encounters: The Three Phases of Gap Growth , 2014, 1412.6035.

[48]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[49]  V. Belokurov,et al.  `Skinny Milky Way please', says Sagittarius , 2014, 1406.2243.

[50]  H. Rix,et al.  Serendipitous discovery of a thin stellar stream near the Galactic bulge in the Pan-STARRS1 3π Survey , 2014, 1405.6645.

[51]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[52]  C. Grillmair,et al.  GAPS IN THE GD-1 STAR STREAM , 2013, 1303.4342.

[53]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[54]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[55]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[56]  R. Carlberg,et al.  DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS , 2011, 1109.6022.

[57]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[58]  D. Hogg,et al.  CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES , 2010, 1012.2884.

[59]  S. Majewski,et al.  THE SAGITTARIUS DWARF GALAXY: A MODEL FOR EVOLUTION IN A TRIAXIAL MILKY WAY HALO , 2010, 1003.1132.

[60]  R. Carlberg STAR STREAM FOLDING BY DARK GALACTIC SUBHALOS , 2009, 0908.4345.

[61]  Cambridge,et al.  CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM , 2009, 0907.1085.

[62]  Benjamin A. Willett,et al.  AN ORBIT FIT FOR THE GRILLMAIR DIONATOS COLD STELLAR STREAM , 2009, 0901.4046.

[63]  Princeton,et al.  The Field of Streams: Sagittarius and Its Siblings , 2006, astro-ph/0605025.

[64]  C. Grillmair,et al.  Detection of a 63° Cold Stellar Stream in the Sloan Digital Sky Survey , 2006, astro-ph/0604332.

[65]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[66]  J. Makino,et al.  Dynamical evolution of star clusters in tidal fields , 2002, astro-ph/0211471.

[67]  Walter Dehnen,et al.  A Matched-Filter Analysis of the Tidal Tails of the Globular Cluster Palomar 5 , 2002 .

[68]  D. Spergel,et al.  How Lumpy Is the Milky Way’s Dark Matter Halo? , 2001, astro-ph/0111196.

[69]  M. Irwin,et al.  Uncovering cold dark matter halo substructure with tidal streams , 2001, astro-ph/0110690.

[70]  D. York,et al.  Detection of Massive Tidal Tails around the Globular Cluster Palomar 5 with Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0012311.

[71]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[72]  D. Spergel,et al.  Tidal Streams as Probes of the Galactic Potential , 1998, astro-ph/9807243.

[73]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[74]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[75]  J. Binney,et al.  Mass models of the Milky Way , 1996, astro-ph/9612059.

[76]  D. Lynden-Bell,et al.  Ghostly streams from the formation of the Galaxy’s halo , 1995 .

[77]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[78]  J. Carlin,et al.  Tidal streams in the local group and beyond : observations and implications , 2016 .

[79]  S. Ikeuchi The baryon clump within an extended dark matter region , 1986 .

[80]  M. Rees Lyman absorption lines in quasar spectra: evidence for gravitationally-confined gas in dark minihaloes , 1986 .

[81]  M. Cropper,et al.  Gaia Data Release 1 , 2022 .