Macroscopic modeling and simulations of room evacuation

Abstract We analyze numerically two macroscopic models of crowd dynamics: the classical Hughes model and the second order model being an extension to pedestrian motion of the Payne–Whitham vehicular traffic model. The desired direction of motion is determined by solving an eikonal equation with density dependent running cost, which results in minimization of the travel time and avoidance of congested areas. We apply a mixed finite volume-finite element method to solve the problems and present error analysis for the eikonal solver, gradient computation and the second order model yielding a first order convergence. We show that Hughes’ model is incapable of reproducing complex crowd dynamics such as stop-and-go waves and clogging at bottlenecks. Finally, using the second order model, we study numerically the evacuation of pedestrians from a room through a narrow exit.

[1]  Régis Duvigneau,et al.  Numerical study of macroscopic pedestrian flow models , 2013 .

[2]  Angel Garcimartín,et al.  Silo clogging reduction by the presence of an obstacle. , 2011, Physical review letters.

[3]  P. Roache Perspective: A Method for Uniform Reporting of Grid Refinement Studies , 1994 .

[4]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[5]  Bertrand Maury,et al.  Handling congestion in crowd motion modeling , 2011, Networks Heterog. Media.

[6]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[7]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[9]  Terence R. Smith,et al.  NAVIGATOR: An Al-Based Model of Human Way-Finding in an Urban Environment , 1990 .

[10]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  F. Bornemann,et al.  Finite-element Discretization of Static Hamilton-Jacobi Equations based on a Local Variational Principle , 2004, math/0403517.

[13]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[14]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[15]  Vicsek,et al.  Freezing by heating in a driven mesoscopic system , 1999, Physical review letters.

[16]  M. Schreckenberg,et al.  Experimental study of pedestrian flow through a bottleneck , 2006, physics/0610077.

[17]  N. Bellomo,et al.  ON THE MODELLING CROWD DYNAMICS FROM SCALING TO HYPERBOLIC MACROSCOPIC MODELS , 2008 .

[18]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  S. Wong,et al.  A higher-order macroscopic model for pedestrian flows , 2010 .

[21]  A. Schadschneider,et al.  Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks , 2008, 0810.1945.

[22]  Nicola Bellomo,et al.  On the modelling of vehicular traffic and crowds by kinetic theory of active particles , 2010 .

[23]  Bernhard Steffen,et al.  New Insights into Pedestrian Flow Through Bottlenecks , 2009, Transp. Sci..

[24]  Ulrich Weidmann,et al.  Parameters of pedestrians, pedestrian traffic and walking facilities , 2006 .

[25]  Rodrigo Escobar,et al.  Architectural Design for the Survival Optimization of Panicking Fleeing Victims , 2003, ECAL.

[26]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[27]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[28]  Marie-Therese Wolfram,et al.  On a mean field game approach modeling congestion and aversion in pedestrian crowds , 2011 .

[29]  S. Bryson,et al.  High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations , 2013 .

[30]  G. Theraulaz,et al.  Vision-based macroscopic pedestrian models , 2013, 1307.1953.

[31]  Dirk Helbing,et al.  Dynamics of crowd disasters: an empirical study. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Cécile Appert-Rolland,et al.  Realistic following behaviors for crowd simulation , 2012, Comput. Graph. Forum.

[33]  T. Vicsek,et al.  Simulation of pedestrian crowds in normal and evacuation situations , 2002 .

[34]  M. Falcone,et al.  Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods , 2002 .

[35]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[36]  Chi-Wang Shu,et al.  Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm , 2009 .

[37]  Benedetto Piccoli,et al.  Multiscale Modeling of Granular Flows with Application to Crowd Dynamics , 2010, Multiscale Model. Simul..

[38]  T. Nagatani,et al.  Jamming transition in pedestrian counter flow , 1999 .

[39]  Régis Duvigneau,et al.  Interactive Computation and Visualization Towards a Virtual Wind Tunnel , 2012 .

[40]  Benedetto Piccoli,et al.  Pedestrian flows in bounded domains with obstacles , 2008, 0812.4390.

[41]  Lubos Buzna,et al.  Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions , 2005, Transp. Sci..

[42]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[43]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[44]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[45]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[46]  Harold J Payne,et al.  MODELS OF FREEWAY TRAFFIC AND CONTROL. , 1971 .

[47]  Yanqun Jiang,et al.  Numerical simulation of pedestrian flow past a circular obstruction , 2011 .

[48]  A. Seyfried,et al.  Basics of Modelling the Pedestrian Flow , 2005, physics/0506189.

[49]  Harry J. P. Timmermans,et al.  A Multi-Agent Cellular Automata System for Visualising Simulated Pedestrian Activity , 2000, ACRI.

[50]  Dirk Helbing,et al.  Crowd Disasters and Simulation of Panic Situations , 2002 .

[51]  Claudio O. Dorso,et al.  Room evacuation in the presence of an obstacle , 2011 .

[52]  R. Hughes The flow of human crowds , 2003 .

[53]  Serge P. Hoogendoorn,et al.  Pedestrian Behavior at Bottlenecks , 2005, Transp. Sci..