Deep generative learning for exploration in large electrochemical impedance dataset

[1]  C. Chung,et al.  Analysis of Electrochemical Impedance Data: Use of Deep Neural Networks , 2023, Advanced Intelligent Systems.

[2]  R. Vasudevan,et al.  Deep learning for exploring ultra-thin ferroelectrics with highly improved sensitivity of piezoresponse force microscopy , 2023, npj Computational Materials.

[3]  Yuxin Jiang,et al.  Augmented flame image soft sensor for combustion oxygen content prediction , 2022, Measurement Science and Technology.

[4]  Shahab S. Band,et al.  Time series-based groundwater level forecasting using gated recurrent unit deep neural networks , 2022, Engineering Applications of Computational Fluid Mechanics.

[5]  Peng Liu,et al.  EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms , 2022, Electrochimica Acta.

[6]  Kaixin Liu,et al.  Multiview Wasserstein generative adversarial network for imbalanced pearl classification , 2022, Measurement Science and Technology.

[7]  Mark A. Dane,et al.  A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis , 2022, Communications Biology.

[8]  Bit Na Choi,et al.  An in-situ spectroscopic study on the photochemical CO2 reduction on CsPbBr3 perovskite catalysts embedded in a porous copper scaffold , 2022, Chemical Engineering Journal.

[9]  Shahab S. Band,et al.  Forecast of rainfall distribution based on fixed sliding window long short-term memory , 2022, Engineering Applications of Computational Fluid Mechanics.

[10]  Jiuchun Jiang,et al.  A modified-electrochemical impedance spectroscopy-based multi-time-scale fractional-order model for lithium-ion batteries , 2021 .

[11]  Minkyu Kim,et al.  Enhancing Electrochemical CO2 Reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 Cathode for High‐Temperature Solid Oxide Electrolysis Cells , 2021, Advanced Energy Materials.

[12]  Haifeng Dai,et al.  A simplification of the time-domain equivalent circuit model for lithium-ion batteries based on low-frequency electrochemical impedance spectra , 2021 .

[13]  Yuk Feng Huang,et al.  Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques , 2021, Engineering Applications of Computational Fluid Mechanics.

[14]  Soumitra Samanta,et al.  Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently , 2020, The Biochemical journal.

[15]  Le Song,et al.  Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders , 2020, Chemistry of Materials.

[16]  Shuji Nakanishi,et al.  Dynamic changes in charge transfer resistances during cycling of aprotic Li-O2 batteries. , 2020, ACS applied materials & interfaces.

[17]  K. Hongo,et al.  Feature Space of XRD Patterns Constructed by an Autoencoder , 2020, Advanced Theory and Simulations.

[18]  Kaixin Liu,et al.  Generative Principal Component Thermography for Enhanced Defect Detection and Analysis , 2020, IEEE Transactions on Instrumentation and Measurement.

[19]  Amin Taheri-Garavand,et al.  Deep learning-based appearance features extraction for automated carp species identification , 2020 .

[20]  Bit Na Choi,et al.  Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application , 2020 .

[21]  T. Sridhar,et al.  Review—Recent Advances in Electrochemical Impedance Spectroscopy Based Toxic Gas Sensors Using Semiconducting Metal Oxides , 2020, Journal of The Electrochemical Society.

[22]  Heon-Cheol Shin,et al.  Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries , 2020, Journal of Electrochemical Science and Technology.

[23]  Alexandria R. C. Bredar,et al.  Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications , 2020, ACS Applied Energy Materials.

[24]  Shan Zhu,et al.  Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning , 2019, 1907.01802.

[25]  R. Murugan,et al.  Enhanced electrochemical performance of lithium–sulphur battery by negating polysulphide shuttling and interfacial resistance through aluminium nanolayer deposition on a polypropylene separator , 2019, Ionics.

[26]  B. Dunn,et al.  Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage , 2018, The Journal of Physical Chemistry C.

[27]  A. Radi,et al.  Electrochemical impedance sensor for herbicide alachlor based on imprinted polymer receptor , 2018 .

[28]  A. Sacco Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells , 2017 .

[29]  Haifeng Dai,et al.  Studies on the medium-frequency impedance arc for Lithium-ion batteries considering various alternating current amplitudes , 2016, Journal of Applied Electrochemistry.

[30]  Yong-nian Dai,et al.  Electrochemical Impedance Studies of CO2 Reduction in Ionic Liquid/Organic Solvent Electrolyte on Au Electrode , 2016 .

[31]  Qiang Fu,et al.  Influence of graphene microstructures on electrochemical performance for supercapacitors , 2015 .

[32]  Kuldip K. Paliwal,et al.  Linear discriminant analysis for the small sample size problem: an overview , 2014, International Journal of Machine Learning and Cybernetics.

[33]  Robert Forchheimer,et al.  Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy , 2015, Nature Communications.

[34]  T. Yokoshima,et al.  Distinction of impedance responses of Li-ion batteries for individual electrodes using symmetric cells , 2014 .

[35]  M. Z. Bazant,et al.  Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes , 2012, 1205.6539.

[36]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[37]  D J Vining,et al.  Receiver operating characteristic curves: a basic understanding. , 1992, Radiographics : a review publication of the Radiological Society of North America, Inc.

[38]  Maokun Li,et al.  Feature-Based Inversion Using Variational Autoencoder for Electrical Impedance Tomography , 2022, IEEE Transactions on Instrumentation and Measurement.

[39]  Bo Tao,et al.  Spatiotemporal Modeling for Nonlinear Distributed Thermal Processes Based on KL Decomposition, MLP and LSTM Network , 2020, IEEE Access.