Glacier crevasses: Observations, models, and mass balance implications

We review the findings of approximately 60 years of in situ and remote sensing studies of glacier crevasses, as well as the three broad classes of numerical models now employed to simulate crevasse fracture. The relatively new insight that mixed-mode fracture in local stress equilibrium, rather than downstream advection alone, can introduce nontrivial curvature to crevasse geometry may merit the reinterpretation of some key historical observation studies. In the past three decades, there have been tremendous advances in the spatial resolution of satellite imagery, as well as fully automated algorithms capable of tracking crevasse displacements between repeat images. Despite considerable advances in developing fully transient three-dimensional ice flow models over the past two decades, both the zero stress and linear elastic fracture mechanics crevasse models have remained fundamentally unchanged over this time. In the past decade, however, multidimensional and transient formulations of the continuum damage mechanics approach to simulating ice fracture have emerged. The combination of employing damage mechanics to represent slow upstream deterioration of ice strength and fracture mechanics to represent rapid failure at downstream termini holds promise for implementation in large-scale ice sheet models. Finally, given the broad interest in the sea level rise implications of recent and future cryospheric change, we provide a synthesis of 10 mechanisms by which crevasses can influence glacier mass balance.

[1]  J. F. Nye,et al.  The Mechanics of Glacier Flow , 1952, Journal of Glaciology.

[2]  S. Nemat-Nasser,et al.  Spacing of water‐free crevasses , 1979 .

[3]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[4]  H. Waisman,et al.  A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets , 2013 .

[5]  K. Koike,et al.  Temporal changes in crevasses in the middle Slessor Glacier, Coats Land, East Antarctica through SAR data analysis , 2012, Earth, Planets and Space.

[6]  Yi-Hsing Tseng,et al.  Automatic tracking of crevasses on satellite images , 1995 .

[7]  B. Lucchitta,et al.  Antarctica: Measuring Glacier Velocity from Satellite Images , 1986, Science.

[8]  Andrew G. Fountain,et al.  Water flow through temperate glaciers , 1998 .

[9]  M. F. Meier,et al.  Glacier Applications of Erts Images , 1975, Journal of Glaciology.

[10]  Alun Hubbard,et al.  Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments , 2012 .

[11]  Douglas I. Benn,et al.  Testing crevasse-depth models: a field study at Breiðamerkurjökull, Iceland , 2009, Journal of Glaciology.

[12]  T. Murray,et al.  Testing the effect of water in crevasses on a physically based calving model , 2012, Annals of Glaciology.

[13]  A. Hubbard,et al.  POLYTHERMAL GLACIER HYDROLOGY: A REVIEW , 2011 .

[14]  L. A. Rasmussen,et al.  Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007 , 2011, Journal of Glaciology.

[15]  Konrad Steffen,et al.  Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland ice sheet , 2011, Journal of Glaciology.

[16]  José M. Gutiérrez,et al.  VALUE: A framework to validate downscaling approaches for climate change studies , 2015 .

[17]  G. Catania,et al.  Seasonal acceleration of inland ice via longitudinal coupling to marginal ice , 2008, Journal of Glaciology.

[18]  M. Hambrey Structure of the glacier Charles Rabots Bre, Norway , 1976 .

[19]  M. R. van den Broeke,et al.  Twenty-one years of mass balance observations along the K-transect, West Greenland , 2012 .

[20]  J. Bassis,et al.  Multi‐year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica , 2005 .

[21]  E. Mosley‐Thompson,et al.  Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming , 2015 .

[22]  P. Skvarca,et al.  Larsen Ice Shelf Has Progressively Thinned , 2003, Science.

[23]  Stuart Edwards,et al.  Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland , 2015, Journal of geophysical research. Earth surface.

[24]  A. Kääb Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya , 2005 .

[25]  D. McGrath,et al.  Basal crevasses and associated surface crevassing on the Larsen C ice shelf, Antarctica, and their role in ice-shelf instability , 2012, Annals of Glaciology.

[26]  C. Bentley,et al.  West Antarctic ice streams draining into the Ross Ice Shelf: Configuration and mass balance , 1987 .

[27]  N. Glasser,et al.  Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula , 2009 .

[28]  Richard R. Forster,et al.  Extensive liquid meltwater storage in firn within the Greenland ice sheet , 2014 .

[29]  A. Kb,et al.  Surface Geometry, Thickness Changes and Flow Fields on Creeping Mountain Permafrost: Automatic Extraction by Digital Image Analysis , 2000 .

[30]  David G. Long,et al.  Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift , 2008 .

[31]  Harihar Rajaram,et al.  Evaluation of cryo‐hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland , 2013 .

[32]  A. Jarosch,et al.  A numerical model for meltwater channel evolution in glaciers , 2011 .

[33]  Adrian J. Luckman,et al.  Improvement of Satellite Radar Feature Tracking for Ice Velocity Derivation by Spatial Frequency Filtering , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[34]  G. Flowers,et al.  A numerical study of hydrologically driven glacier dynamics and subglacial flooding , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  N. Glasser,et al.  Formation of band ogives and associated structures at Bas Glacier d’Arolla, Valais, Switzerland , 2002, Journal of Glaciology.

[36]  J. Weiss,et al.  On Duddu and Waisman (2012, 2013) concerning continuum damage mechanics applied to crevassing and iceberg calving , 2013, Journal of Glaciology.

[37]  R. Bindschadler,et al.  Satellite-Image-Derived Velocity Field of an Antarctic Ice Stream , 1991, Science.

[38]  R. Thomas,et al.  Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbræ, Greenland , 2004, Journal of Glaciology.

[39]  H. Oerter,et al.  Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing , 1999 .

[40]  Mark F. Meier,et al.  Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1: Observations , 1994 .

[41]  G. Robin Depth of water-fitted crevasses that are closely spaced , 1974 .

[42]  Xianwei Wang,et al.  Detection of crevasses over polar ice shelves using Satellite Laser Altimeter , 2014, Science China Earth Sciences.

[43]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[44]  D. Macayeal,et al.  Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism , 2003, Journal of Glaciology.

[45]  D. Vaughan,et al.  Subsurface crevasse formation in glaciers and ice sheets , 2003 .

[46]  J. Bassis,et al.  A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics , 2013 .

[47]  L. A. Rasmussen,et al.  Glossary of glacier mass balance and related terms , 2010 .

[48]  T. Murray,et al.  On the role of buoyant flexure in glacier calving , 2016 .

[49]  W. Lipscomb,et al.  Volume and velocity changes at Mittivakkat Gletscher, southeast Greenland , 2013, Journal of Glaciology.

[50]  C. Veen Crevasses on glaciers 1 , 1999 .

[51]  Baerbel K. Lucchitta,et al.  Velocity measurements and changes in position of Thwaites Glacier/iceberg tongue from aerial photography, Landsat images and NOAA AVHRR data , 1993 .

[52]  Tazio Strozzi,et al.  ERS SAR feature-tracking measurement of outlet glacier velocities on a regional scale in East Greenland , 2003, Annals of Glaciology.

[53]  Konrad Steffen,et al.  Surface energy exchange at the equilibrium line on the Greenland ice sheet during onset of melt , 1995, Annals of Glaciology.

[54]  Garry K. C. Clarke,et al.  Thermal Effects of Crevassing on Steele Glacier, Yukon Territory, Canada , 1974, Journal of Glaciology.

[55]  G. Sih,et al.  Alternating method applied to edge and surface crack problems , 1973 .

[56]  J. L. Sollid,et al.  Mass balance and changes of surface slope, crevasse and flow pattern of Erikbreen, northern Spitsbergen: an application of a geographical information system (GIS) , 1993 .

[57]  B. Amadei,et al.  Stress interaction between multiple crevasses in glacier ice , 1996 .

[58]  Fiona Cawkwell,et al.  Mapping Blue-Ice Areas and Crevasses in West Antarctica Using ASTER Images, GPS, and Radar Measurements , 2014 .

[59]  Aslak Grinsted,et al.  Semiempirical and process‐based global sea level projections , 2012 .

[60]  Dan Johan Weydahl,et al.  ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard , 2003 .

[61]  W. Krabill,et al.  Calculation of Ice Velocities in the Jakobshavn Isbrae Area Using Airborne Laser Altimetry , 1999 .

[62]  M. Sharp,et al.  The role of hydrologically‐driven ice fracture in drainage system evolution on an Arctic glacier , 2003 .

[63]  Ian Joughin,et al.  Glaciological advances made with interferometric synthetic aperture radar , 2010, Journal of Glaciology.

[64]  J. Weiss,et al.  Combining damage and fracture mechanics to model calving , 2014 .

[65]  T. Murray,et al.  Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier , 2014 .

[66]  Tazio Strozzi,et al.  Glacier surge dynamics of Sortebræ, east Greenland, from synthetic aperture radar feature tracking , 2005 .

[67]  S. Pan,et al.  A second order cone complementarity approach for the numerical solution of elastoplasticity problems , 2013 .

[68]  Yushin Ahn,et al.  Surface roughness over the northern half of the Greenland Ice Sheet from airborne laser altimetry , 2009 .

[69]  C. J. Pings Heat Flux Distribution Near a Crevasse , 1963, Journal of Glaciology.

[70]  Aslak Grinsted,et al.  Image georectification and feature tracking toolbox: ImGRAFT , 2014 .

[71]  J. Turner,et al.  Relict flow stripes on the Ross Ice Shelf , 1991, Annals of Glaciology.

[72]  M. Hambrey,et al.  Structural styles and deformation fields in glaciers: a review , 2000, Geological Society, London, Special Publications.

[73]  Roman J. Motyka,et al.  Short-term variations in calving of a tidewater glacier: LeConte Glacier, Alaska, U.S.A. , 2003, Journal of Glaciology.

[74]  C. J. van der Veen,et al.  Fracture mechanics approach to penetration of surface crevasses on glaciers , 1998 .

[75]  G. Catania,et al.  Characterizing englacial drainage in the ablation zone of the Greenland ice sheet , 2008 .

[76]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[77]  H. Gäggeler,et al.  Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai , 2006 .

[78]  N. Reeh On The Calving of Ice From Floating Glaciers and Ice Shelves , 1968, Journal of Glaciology.

[79]  R. Smith The Application of Fracture Mechanics to the Problem of Crevasse Penetration , 1976, Journal of Glaciology.

[80]  Julian A. Dowdeswell,et al.  Form and flow of the Devon Island Ice Cap, Canadian Arctic , 2004 .

[81]  D. Gallaher,et al.  A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm , 2012 .

[82]  Stefan Leyk,et al.  Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory , 2011 .

[83]  L. Cathles,et al.  Modeling surface-roughness/solar-ablation feedback: application to small-scale surface channels and crevasses of the Greenland ice sheet , 2011, Annals of Glaciology.

[84]  M. Meier Mode of flow of Saskatchewan Glacier, Alberta, Canada , 1960 .

[85]  Theodore A. Scambos,et al.  Surface roughness characterizations of sea ice and ice sheets: case studies with MISR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[86]  L. Lliboutry Velocities, strain rates, stresses, crevassing and faulting on Glacier de Saint-Sorlin, French Alps, 1957–76 , 2002, Journal of Glaciology.

[87]  C. Bentley,et al.  Evidence for a recently abandoned shear margin adjacent to ice stream B2, Antarctica, from ice‐penetrating radar measurements , 2000 .

[88]  Ute Christina Herzfeld,et al.  A connectionist-geostatistical approach to automated image classification, applied to the analysis of crevasse patterns in surging ice , 2001 .

[89]  Y. Tseng,et al.  Velocity pattern in a transect across Ice Stream B, Antarctica , 1993 .

[90]  W. T. Pfeffer,et al.  Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020 , 2012 .

[91]  G. Clarke,et al.  A multicomponent coupled model of glacier hydrology 2. Application to Trapridge Glacier, Yukon, Canada , 2002 .

[92]  John C. Cook,et al.  An electrical crevasse detector , 1956 .

[93]  G. Holdsworth Primary Transverse Crevasses , 1969, Journal of Glaciology.

[94]  N. Mcintyre Cryoconite hole thermodynamics , 1984 .

[95]  Relating the occurrence of crevasses to surface strain rates , 1993 .

[96]  Fengming Hui,et al.  Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves , 2015, Proceedings of the National Academy of Sciences.

[97]  D. Benn,et al.  ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers , 2007, Annals of Glaciology.

[98]  A. Luckman,et al.  Basal crevasses in Larsen C Ice Shelf and implications for their global abundance , 2011 .

[99]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[100]  Tavi Murray,et al.  Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland , 2005 .

[101]  D. McGrath,et al.  Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture , 2012 .

[102]  K. Jezek,et al.  Drainage from water‐filled crevasses along the margins of Jakobshavn Isbræ: A potential catalyst for catchment expansion , 2013 .

[103]  P. Martin Ridges on Antarctic Ice Rises , 1976, Journal of Glaciology.

[104]  T. Zwinger,et al.  The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer , 2008 .

[105]  Henry W. Posamentier,et al.  Thoughts on Ogive Formation , 1978, Journal of Glaciology.

[106]  Joel T. Harper,et al.  Crevasse patterns and the strain-rate tensor: a high-resolution comparison , 1998, Journal of Glaciology.

[107]  Kenneth C. Jezek,et al.  Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery , 1999, Annals of Glaciology.

[108]  C. R. Allen,et al.  Flow of Blue Glacier, Olympic Mountains, Washington, U.S.A. , 1974, Journal of Glaciology.

[109]  Evolution of a surge-type glacier in its quiescent phase: Kongsvegen, Spitsbergen, 1964-95Kjetil Melvold and Jon Ove Hagen 405-418Ice-shelf dynamics near the front of the Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometry , 1998 .

[110]  N. Urabe Fracture Toughness of Ice , 1981 .

[111]  C. Bentley,et al.  High-resolution radar on Ice Stream B2, Antarctica: measurements of electromagnetic wave speed in firn and strain history from buried crevasses , 1994, Annals of Glaciology.

[112]  Phillip A. Chen,et al.  Elevation changes and dynamic provinces of Jakobshavn Isbræ, Greenland, derived using generalized spatial surface roughness from ICESat GLAS and ATM data , 2014 .

[113]  Ice The international classification for seasonal snow on the ground , 1990 .

[114]  R. Alley,et al.  Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights , 2005, Annals of Glaciology.

[115]  J. Kohler,et al.  On the use of ground penetrating radar for detecting and reducing crevasse-hazard in Dronning Maud Land, Antarctica , 2006 .

[116]  Monique Dechambre,et al.  Dual-frequency altimeter signal from Envisat on the Amery ice-shelf , 2007 .

[117]  Tavi Murray,et al.  Rapid and synchronous ice‐dynamic changes in East Greenland , 2006 .

[118]  P. Vornberger,et al.  Surface Features of Ice Stream B, Marie Byrd Land, West Antarctica , 1986, Annals of Glaciology.

[119]  Harihar Rajaram,et al.  Considering thermal‐viscous collapse of the Greenland ice sheet , 2015, Earth's future.

[120]  Jocelyn Chanussot,et al.  Combining Airborne Photographs and Spaceborne SAR Data to Monitor Temperate Glaciers: Potentials and Limits , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[121]  C. Merry,et al.  Ice-flow features on Ice Stream B, Antarctica, revealed by SPOT HRV imagery , 1993, Journal of Glaciology.

[122]  Henry H. Brecher,et al.  Surface Velocity Determination on Large Polar Glaciers by Aerial Photogrammetry , 1986, Annals of Glaciology.

[123]  Matthew J. Hoffman,et al.  Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet , 2011 .

[124]  Harihar Rajaram,et al.  Cryo‐hydrologic warming: A potential mechanism for rapid thermal response of ice sheets , 2010 .

[125]  B. Csathó,et al.  Surface roughness on the Greenland Ice Sheet from airborne laser altimetry , 1998 .

[126]  R. Krimmel Photogrammetric Data Set, 1957-2000, and Bathymetric Measurements for Columbia Glacier, Alaska , 2001 .

[127]  I. Jordaan,et al.  Effect of microcracking on the deformation of ice , 1992 .

[128]  J. Harper,et al.  Vertical extension of the subglacial drainage system into basal crevasses , 2010, Nature.

[129]  Jostein Amlien,et al.  Visible and near-infrared digital images for determination of ice velocities and surface elevation during a surge on Osbornebreen, a tidewater glacier in Svalbard , 1997 .

[130]  R. Bindschadler,et al.  Application of image cross-correlation to the measurement of glacier velocity using satellite image data , 1992 .

[131]  Alun Hubbard,et al.  Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations , 2012 .

[132]  R. Hooke Englacial and subglacial hydrology : a qualitative review , 1989 .

[133]  N. Glasser,et al.  The structural glaciology of southwest Antarctic Peninsula Ice Shelves (ca. 2010) , 2013 .

[134]  William H. Lipscomb,et al.  A Community Ice Sheet Model for Sea Level Prediction , 2009 .

[135]  C. J. Pings,et al.  Preliminary study of crevasse formation : Blue Ice Valley, Greenland, 1955 , 1957 .

[136]  J. Petrovic Review Mechanical properties of ice and snow , 2003 .

[137]  Structures and Ice Deformation in the White Glacier, Axel Heiberg Island, Northwest Territories, Canada , 1978 .

[138]  A. J. Luis,et al.  A Review on Applications of Imaging Synthetic Aperture Radar with a Special Focus on Cryospheric Studies , 2015 .

[139]  R. Goldstein,et al.  Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream , 1993, Science.

[140]  L. Stearns,et al.  Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland , 2011, Journal of Glaciology.

[141]  R. Alley,et al.  Fracture toughness of ice and firn determined from the modified ring test , 1995, Journal of Glaciology.

[142]  N. Glasser,et al.  A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse , 2007, Journal of Glaciology.

[143]  E. L. Andreas Parameterizing Scalar Transfer over Snow and Ice: A Review , 2002 .

[144]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[145]  M. Thompson,et al.  An X-band crevasse detection radar for the Arctic and Antarctic , 2013, 2013 IEEE Radar Conference (RadarCon13).

[146]  M. Lüthi,et al.  Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming , 2014 .

[147]  R. Bindschadler,et al.  Guiding the South Pole Traverse with ASTER imagery , 2005, Journal of Glaciology.

[148]  L. Paoli,et al.  Dynamics of a small surge-type glacier using one-dimensional geophysical inversion , 2009 .

[149]  Andrew Palmer,et al.  High pressure zone formation during compressive ice failure , 2001 .

[150]  Veijo A. Pohjola,et al.  TV-video observations of englacial voids in Storglaciären, Sweden , 1994 .

[151]  E. Schulson Brittle failure of ice , 2001 .

[152]  Ian Jordaan,et al.  Application of damage mechanics to ice failure in compression , 1996 .

[153]  E. Mosley‐Thompson,et al.  Greenland meltwater storage in firn limited by near-surface ice formation , 2016 .

[154]  F. B. Leighton Ogives of the East Twin Glacier, Alaska Their Nature and Origin , 1951, The Journal of Geology.

[155]  Laura E. Ray,et al.  Autonomous GPR Surveys using the Polar Rover Yeti , 2013, J. Field Robotics.

[156]  Shawn J. Marshall,et al.  Recent advances in understanding ice sheet dynamics , 2005 .

[157]  Roland C. Warner,et al.  A method for sub-pixel scale feature-tracking using Radarsat images applied to the Mertz Glacier Tongue, East Antarctica , 2009 .

[158]  Andreas Kääb,et al.  Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet- vs. correlation-based image matching , 2013 .

[159]  K. Kjær,et al.  Terminus-driven retreat of a major southwest Greenland tidewater glacier during the early 19th century: insights from glacier reconstructions and numerical modelling , 2014, Journal of Glaciology.

[160]  Kenneth C. Jezek,et al.  Field studies of bottom crevasses in the Ross Ice Shelf, Antarctica , 1983 .

[161]  David G. Vaughan,et al.  Widespread Acceleration of Tidewater Glaciers on the Antarctic Peninsula , 2007 .

[162]  Helmut Mayer,et al.  Derivation of deformation characteristics in fast-moving glaciers , 2004, Comput. Geosci..

[163]  I. Joughin,et al.  Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water , 2011 .

[164]  M. Funk,et al.  Dynamic damage model of crevasse opening and application to glacier calving , 2005 .

[165]  M. Lüthi,et al.  A description of crevasse formation using continuum damage mechanics , 2003, Annals of Glaciology.

[166]  Ian Joughin,et al.  Limits to future expansion of surface‐melt‐enhanced ice flow into the interior of western Greenland , 2015 .

[167]  N. Glasser,et al.  Debris entrainment and transfer in polythermal valley glaciers , 1999, Journal of Glaciology.

[168]  C. R. Allen,et al.  Structure of the Lower Blue Glacier, Washington , 1960, The Journal of Geology.

[169]  Ian Joughin,et al.  Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage , 2008, Science.

[170]  S. Marshall,et al.  Simulation of Vatnajökull ice cap dynamics , 2005 .

[171]  S. Williamson,et al.  Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999–2003 , 2008, Journal of Glaciology.

[172]  R. Kwok,et al.  Greenland Ice Sheet Surface Properties and Ice Dynamics from ERS-1 SAR Imagery , 1993, Science.

[173]  Regine Hock,et al.  Glacier melt: a review of processes and their modelling , 2005 .

[174]  W. Haeberli,et al.  The Uplift of Unteraargletscher at the Beginning of the Melt Season—A Consequence of Water Storage at the Bed? , 1983, Journal of Glaciology.

[175]  Julian B. T. Scott,et al.  Crevasses triggered on Pine Island Glacier, West Antarctica, by drilling through an exceptional melt layer , 2010, Annals of Glaciology.

[176]  J. Box,et al.  Evidence of meltwater retention within the Greenland ice sheet , 2012 .

[177]  Crevasse deformation and examples from ice stream B, Antarctica , 1990 .

[178]  John P. Kerekes,et al.  First principles modeling for lidar sensing of complex ice surfaces , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[179]  L. Thompson,et al.  Thirty‐year history of glacier melting in the Nepal Himalayas , 2006 .

[180]  Harihar Rajaram,et al.  An increase in crevasse extent, West Greenland: Hydrologic implications , 2011 .

[181]  C. Bentley,et al.  Electromagnetic Sounding of Bottom Crevasses on the Ross Ice Shelf, Antarctica , 1979, Journal of Glaciology.

[182]  Xiaoli Sun,et al.  ICESat measurement of Greenland ice sheet surface slope and roughness , 2005, Annals of Glaciology.

[183]  Erik R. Venteris,et al.  Rapid tidewater glacier retreat: a comparison between Columbia Glacier, Alaska and Patagonian calving glaciers , 1999 .

[184]  M. Morlighem,et al.  A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically‐based calving law , 2012 .

[185]  M. Hambrey,et al.  Dynamics and Structure of Griesgletscher, Switzerland , 1980, Journal of Glaciology.

[186]  Joel T. Harper,et al.  Borehole video analysis of a temperate glacier' englacial and subglacial structure: Implications for glacier flow models , 1995 .

[187]  J. Nye Monstars on Glaciers , 1983, Journal of Glaciology.

[188]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[189]  D. M. Ragan Structures at the Base of an Ice Fall , 1969, The Journal of Geology.

[190]  Barclay Kamb,et al.  Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska , 1985, Science.

[191]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[192]  John Tyndall On the Veined Structure of Glaciers; with Observations upon White Ice-Seams, Air-Bubbles and Dirt-Bands, and Remarks upon Glacier Theories , 1859 .

[193]  S. Leprince,et al.  Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment , 2008 .

[194]  J. Bassis,et al.  Evolution of basal crevasses links ice shelf stability to ocean forcing , 2015 .

[195]  Ian M. Howat,et al.  Continued evolution of Jakobshavn Isbrae following its rapid speedup , 2008 .

[196]  B. Molnia Glaciers of North America - Glaciers of Alaska , 2008 .

[197]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[198]  F. Navarro,et al.  Application of radar and seismic methods for the investigation of temperate glaciers , 2005 .

[199]  H. Waisman,et al.  A temperature dependent creep damage model for polycrystalline ice , 2012 .

[200]  Peter L. Moore,et al.  Deformation of debris‐ice mixtures , 2014 .

[201]  Measurement of temperature in a margin of Ice Stream B, Antarctica : implications for margin migration and lateral drag , 1998 .

[202]  A. Vieli,et al.  A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics , 2010, Journal of Glaciology.

[203]  P. Nienow,et al.  Modelling the delivery of supraglacial meltwater to the ice/bed interface: application to southwest Devon Ice Cap, Nunavut, Canada , 2012 .

[204]  Gabriel Vasile,et al.  Monitoring Temperate Glacier Displacement by Multi-Temporal TerraSAR-X Images and Continuous GPS Measurements , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[205]  M. L. Cuadrado,et al.  A three-dimensional calving model: numerical experiments on Johnsons Glacier, Livingston Island, Antarctica , 2010, Journal of Glaciology.

[206]  R. Bindschadler,et al.  Mass Balance of Ice Stream B, West Antarctica , 1988, Annals of Glaciology.

[207]  M. Hambrey,et al.  Deformation histories and structural assemblages of glacier ice in a non-steady flow regime , 2000, Geological Society, London, Special Publications.

[208]  Sébastien Leprince,et al.  Co-Registration of Optically Sensed Images and Correlation (COSI-Corr): an operational methodology for ground deformation measurements , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[210]  H. Waisman,et al.  On the continuum damage mechanics approach to modeling of polar ice fracture: a reply , 2013, Journal of Glaciology.

[211]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[212]  C. Swithinbank,et al.  A Glaciological Map of Filchner-Ronne Ice Shelf, Antarctica , 1988, Annals of Glaciology.

[213]  Alun Hubbard,et al.  Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier , 2010 .