A Statistical Approach for the Maximization of the Financial Benefits Yielded by a Large Set of MMFs and AEs

This article introduces a statistical approach for the maximization of the financial benefits yielded by software projects that have been broken down into a considerable number of minimum marketable features modules (MMFs) and architectural elements (AEs). As the statistical approach requires a polynomial computational effort to run and provides approximation solutions with an arbitrarily chosen degree of confidence, it allows managers and developers to be more confident about the rightness of the decisions they make with little additional computational effort.

[1]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[2]  John E. Walsh,et al.  Bounded probability properties of Kolmogorov-Smirnov and similar statistics for discrete data , 1963 .

[3]  Capers Jones,et al.  Estimating software costs : bringing realism to estimating , 2007 .

[4]  Annick Lesne,et al.  Kolmogorov's heritage in mathematics , 2007 .

[5]  Carl K. Chang,et al.  Function-Class Decomposition: A Hybrid Software Engineering Method , 2001, Computer.

[6]  David L. Ferro,et al.  Computers: The Life Story of a Technology , 2005 .

[7]  L. H. Miller Table of Percentage Points of Kolmogorov Statistics , 1956 .

[8]  Roberto Vinaja,et al.  Information Technology Investment: Decision-Making Methodology , 2005 .

[9]  A. Kolmogoroff Confidence Limits for an Unknown Distribution Function , 1941 .

[10]  Jürgen Münch,et al.  Factors Influencing Software Development Productivity - State-of-the-Art and Industrial Experiences , 2009, Adv. Comput..

[11]  J. Sauvé,et al.  An Introductory Overview and Survey of Business-Driven IT Management , 2006, 2006 IEEE/IFIP Business Driven IT Management.

[12]  Barry W. Boehm,et al.  Value-Based Software Engineering: Overview and Agenda , 2006, Value-Based Software Engineering.

[13]  W. Conover A Kolmogorov Goodness-of-Fit Test for Discontinuous Distributions , 1972 .

[14]  Martin Campbell-Kelly Historical reflectionsWill the future of software be open source? , 2008, Commun. ACM.

[15]  H. Kurata,et al.  After-sales service competition in a supply chain: Optimization of customer satisfaction level or profit or both? , 2010 .

[16]  A. Pettitt,et al.  The Kolmogorov-Smirnov Goodness-of-Fit Statistic with Discrete and Grouped Data , 1977 .

[17]  Antonio J. Alencar,et al.  A Method for Portfolio Management and Prioritization - An Incremental Funding Method Approach , 2010, ICEIS.

[18]  Akos Szoke,et al.  Decision Support for Iteration Scheduling in Agile Environments , 2009, PROFES.

[19]  Hans van Vliet,et al.  Software engineering - principles and practice , 1993 .

[20]  Z. Birnbaum,et al.  One-Sided Confidence Contours for Probability Distribution Functions , 1951 .

[21]  Todd Little,et al.  Value creation and capture: a model of the software development process , 2004, IEEE Software.

[22]  Jean Dickinson Gibbons,et al.  Nonparametric Statistical Inference , 1972, International Encyclopedia of Statistical Science.

[23]  T. O. Lewis,et al.  A note on a one-sided Kolmogorov-Smirnov test of fit for discrete distribution functions , 1972 .

[24]  J. Cleland-Huang,et al.  Financially informed requirements prioritization , 2005, Proceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005..

[25]  Christoph Steindl,et al.  From agile software development to agile businesses , 2005, 31st EUROMICRO Conference on Software Engineering and Advanced Applications.

[26]  Jane Cleland-Huang,et al.  The incremental funding method: data-driven software development , 2004, IEEE Software.

[27]  Claudine Toffolon,et al.  An Iterative Meta-Lifecycle for Software Development, Evolution and Maintenance , 2008, 2008 The Third International Conference on Software Engineering Advances.