Computer-Assisted Reading: Getting Help from Text Classification and Maximal Association Rules

The combination of text classification and maximal association rules will allow the extraction of hidden knowledge, often relevant from the text and allow the detection of dependencies and correlations between the relevant units of information (words) of different classes. In fact, the results of text classification take the form of large and noisy classes of similarities. Index Terms—Classification, Maximal association rules, Computer assisted reading

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  William K. Estes,et al.  Classification and cognition , 1994 .

[3]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[4]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[5]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[6]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[7]  M Damashek,et al.  Gauging Similarity with n-Grams: Language-Independent Categorization of Text , 1995, Science.

[8]  Patrick Meyer,et al.  Mesure formelle de la robustesse des règles d'association , 2012, Mesurer et évaluer la Qualité des Données et des Connaissances.

[9]  Yonatan Aumann,et al.  Maximal Association Rules: A Tool for Mining Associations in Text , 2005, Journal of Intelligent Information Systems.

[10]  Padmavathi Mundur,et al.  An N-gram based Approach for Finding the Repeating Patterns in Musical Data , 2005, EuroIMSA.

[11]  Petr Hájek,et al.  The GUHA method of automatic hypotheses determination , 1966, Computing.

[12]  Boucif Amar Bensaber,et al.  Extraction of Strong Associations in Classes of Similarities , 2012, 2012 11th International Conference on Machine Learning and Applications.

[13]  O. Teytaud,et al.  Évaluation et validation de l'intérêt des règles d'association , 2003 .

[14]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[15]  Nicolas Turenne,et al.  Apprentissage statistique pour l'extraction de concepts à partir de textes : application au filtrage d'informations textuelles , 2000 .

[16]  Ting Chen,et al.  Techniques for Gigabyte-Scale N-gram Based Information Retrieval on Personal Computers , 1999, PDPTA.

[17]  Moussa Lo,et al.  Intégration de règles d'association pour améliorer la recherche d'informations XML , 2007, CORIA.

[18]  Mehran Sahami,et al.  Text Mining: Classification, Clustering, and Applications , 2009 .

[19]  Benoît Vaillant Mesurer la qualité des règles d'association: études formelles et expérimentales. (Evaluating the interestingness of association rules through the use of interstingness measures: formal and experimental studies) , 2006 .

[20]  Ismaïl Biskri,et al.  Text classification: A preferred tool for audio file classification , 2008, 2008 IEEE/ACS International Conference on Computer Systems and Applications.