Global minimum-time trajectory planning of mechanical manipulators using interval analysis

The paper addresses the global minimum-time trajectory planning of an m -joint mechanical manipulator. Using a joint space scheme with given intermediate points to be interpolated by piecewise cubic polynomials, a novel bisecting-plane algorithm is proposed to schedule the times between adjacent knots under velocity, acceleration, and jerk constraints. This algorithm, which is proved to be globally convergent with certainty within an arbitrary precision, uses an interval procedure (a subroutine adopting tools and ideas of interval analysis) in proving that a local minimum is actually a global one. A worked example for the six-joint case is exposed, and computational results of a C+ + implementation are included.

[1]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[2]  C. Lin,et al.  Formulation and optimization of cubic polynomial joint trajectories for industrial robots , 1983 .

[3]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[4]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[5]  N. McKay,et al.  A dynamic programming approach to trajectory planning of robotic manipulators , 1986 .

[6]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[7]  H. Tuy,et al.  Global optimization under Lipschitzian constraints , 1987 .

[8]  James E. Bobrow,et al.  Optimal Robot Path Planning Using the Minimum-Time Criterion , 2022 .

[9]  Renfrey B. Potts,et al.  Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints , 1988, IEEE J. Robotics Autom..

[10]  Kostas J. Kyriakopoulos,et al.  Minimum jerk path generation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[11]  Steven Dubowsky,et al.  Robot Path Planning with Obstacles, Actuator, Gripper, and Payload Constraints , 1989, Int. J. Robotics Res..

[12]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[13]  Dan Simon The application of neural networks to optimal robot trajectory planning , 1993, Robotics Auton. Syst..

[14]  E. Walter,et al.  Guaranteed characterization of stability domains via set inversion , 1994, IEEE Trans. Autom. Control..

[15]  Chia-Ju Wu,et al.  A numerical approach for time-optimal path-planning of kinematically redundant manipulators , 1994, Robotica.

[16]  Eric Walter,et al.  Guaranteed tuning, with application to robust control and motion planning , 1996, Autom..

[17]  Aurelio Piazzi,et al.  Robust stability using interval analysis , 1996, Int. J. Syst. Sci..

[18]  Aurelio Piazzi,et al.  A global optimization approach to trajectory planning for industrial robots , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[19]  Mario Milanese,et al.  Robust Analysis and Design of Control Systems Using Interval Arithmetic , 1997, Autom..

[20]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .