Mechanisms of membrane deformation.

[1]  W. Huttner,et al.  Characterization of Endophilin B1b, a Brain-specific Membrane-associated Lysophosphatidic Acid Acyl Transferase with Properties Distinct from Endophilin A1* , 2003, The Journal of Biological Chemistry.

[2]  S. Emr,et al.  Receptor downregulation and multivesicular-body sorting , 2002, Nature Reviews Molecular Cell Biology.

[3]  W. Sundquist,et al.  Mechanisms of enveloped RNA virus budding. , 2002, Trends in cell biology.

[4]  R. Nossal,et al.  Endocytosis: Curvature to the ENTH Degree , 2002, Current Biology.

[5]  Louis Renault,et al.  Arf, Arl, Arp and Sar proteins: a family of GTP‐binding proteins with a structural device for ‘front–back’ communication , 2002, EMBO reports.

[6]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[7]  R. A. Corpina,et al.  Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat , 2002, Nature.

[8]  Markus R Wenk,et al.  Amphiphysin 2 (Bin1) and T-Tubule Biogenesis in Muscle , 2002, Science.

[9]  Richard G. W. Anderson,et al.  Mechanism of caveolin filament assembly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Markus Babst,et al.  Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. , 2002, Developmental cell.

[11]  L. Zitvogel,et al.  From the antigen-presenting cell to the antigen-presenting vesicle: the exosomes. , 2002, Current opinion in molecular therapeutics.

[12]  W. B. Snyder,et al.  Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. , 2002, Developmental cell.

[13]  Laurence Zitvogel,et al.  Exosomes: composition, biogenesis and function , 2002, Nature Reviews Immunology.

[14]  P. Stahl,et al.  Multivesicular Bodies and Multivesicular Endosomes: The "Ins and Outs" of Endosomal Traffic , 2002, Science's STKE.

[15]  L. Sibley,et al.  Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins. , 2002, Molecular biology of the cell.

[16]  R. Thurmond,et al.  Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. , 2002, Journal of the American Chemical Society.

[17]  D. Fremont,et al.  Accessory protein recruitment motifs in clathrin-mediated endocytosis. , 2002, Structure.

[18]  Jonathan A. Cooper,et al.  Myosin VI Binds to and Localises with Dab2, Potentially Linking Receptor‐Mediated Endocytosis and the Actin Cytoskeleton , 2002, Traffic.

[19]  I. Meinertzhagen,et al.  Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release , 2002, Cell.

[20]  W. Huttner,et al.  Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction , 2002, The EMBO journal.

[21]  D. Schafer,et al.  Coupling actin dynamics and membrane dynamics during endocytosis. , 2002, Current opinion in cell biology.

[22]  P. Bassereau,et al.  A minimal system allowing tubulation with molecular motors pulling on giant liposomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. de Figueiredo,et al.  Inhibition of Transferrin Recycling and Endosome Tubulation by Phospholipase A2 Antagonists* , 2001, The Journal of Biological Chemistry.

[24]  C. Volland,et al.  Membrane transport: Ubiquitylation in endosomal sorting , 2001, Current Biology.

[25]  D. Bredesen,et al.  De Novo-designed Peptide Transforms Golgi-specific Lipids into Golgi-like Nanotubules* , 2001, The Journal of Biological Chemistry.

[26]  C. Morton,et al.  Solid-state NMR structure determination of melittin in a lipid environment. , 2001, Biophysical journal.

[27]  P. De Camilli,et al.  Generation of high curvature membranes mediated by direct endophilin bilayer interactions , 2001, The Journal of cell biology.

[28]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[29]  Peijun Zhang,et al.  Three-dimensional reconstruction of dynamin in the constricted state , 2001, Nature Cell Biology.

[30]  L. Hicke A New Ticket for Entry into Budding Vesicles—Ubiquitin , 2001, Cell.

[31]  J. Luzio,et al.  Late Endosomes: Sorting and Partitioning in Multivesicular Bodies , 2001, Traffic.

[32]  S. White,et al.  How Membranes Shape Protein Structure* , 2001, The Journal of Biological Chemistry.

[33]  M. Drab,et al.  Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice , 2001, Science.

[34]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[35]  J. Luzio,et al.  Myosin VI isoform localized to clathrin‐coated vesicles with a role in clathrin‐mediated endocytosis , 2001, The EMBO journal.

[36]  H. Ueda,et al.  Clathrin‐Dependent and Clathrin‐Independent Endocytosis are Differentially Sensitive to Insertion of Poly (Ethylene Glycol)‐Derivatized Cholesterol in the Plasma Membrane , 2001, Traffic.

[37]  R. Thurmond,et al.  Composite membrane deformation on the mesoscopic length scale. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  I. Mills,et al.  GTPase activity of dynamin and resulting conformation change are essential for endocytosis , 2001, Nature.

[39]  J. Cherfils,et al.  The structural GDP/GTP cycle of human Arf6 , 2001, EMBO reports.

[40]  Laurence Zitvogel,et al.  Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming , 2001, Nature Medicine.

[41]  P R Evans,et al.  Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. , 2001, Science.

[42]  S. White,et al.  Structure, location, and lipid perturbations of melittin at the membrane interface. , 2001, Biophysical journal.

[43]  R. Nossal Energetics of Clathrin Basket Assembly , 2001, Traffic.

[44]  S. Kornfeld,et al.  The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes. , 2000, Molecular biology of the cell.

[45]  S. Schmid,et al.  Dynamin is membrane-active: lipid insertion is induced by phosphoinositides and phosphatidic acid. , 2000, Biochemistry.

[46]  H. Geuze,et al.  Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. , 2000, Journal of cell science.

[47]  Koert N. J. Burger,et al.  Greasing Membrane Fusion and Fission Machineries , 2000, Traffic.

[48]  Mark H. Ellisman,et al.  Fission and Uncoating of Synaptic Clathrin-Coated Vesicles Are Perturbed by Disruption of Interactions with the SH3 Domain of Endophilin , 2000, Neuron.

[49]  P. De Camilli,et al.  A Functional Link between Dynamin and the Actin Cytoskeleton at Podosomes , 2000, The Journal of cell biology.

[50]  P. De Camilli,et al.  Tandem Arrangement of the Clathrin and AP-2 Binding Domains in Amphiphysin 1 and Disruption of Clathrin Coat Function by Amphiphysin Fragments Comprising These Sites* , 2000, The Journal of Biological Chemistry.

[51]  J. Findlay,et al.  Peripherin/rds Influences Membrane Vesicle Morphology , 2000, The Journal of Biological Chemistry.

[52]  S. Emr,et al.  Phosphoinositide signaling and the regulation of membrane trafficking in yeast. , 2000, Trends in biochemical sciences.

[53]  Tom A. Rapoport,et al.  In Vitro Formation of the Endoplasmic Reticulum Occurs Independently of Microtubules by a Controlled Fusion Reaction , 2000, The Journal of cell biology.

[54]  M. McNiven,et al.  The dynamin family of mechanoenzymes: pinching in new places. , 2000, Trends in biochemical sciences.

[55]  V. Allan,et al.  Brefeldin A-dependent membrane tubule formation reconstituted in vitro is driven by a cell cycle-regulated microtubule motor. , 2000, Molecular biology of the cell.

[56]  P. Kinnunen,et al.  Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. , 2000, Biophysical journal.

[57]  J. Lippincott-Schwartz,et al.  Secretory protein trafficking and organelle dynamics in living cells. , 2000, Annual review of cell and developmental biology.

[58]  J. Hurley,et al.  Signaling and subcellular targeting by membrane-binding domains. , 2000, Annual review of biophysics and biomolecular structure.

[59]  J. Hinshaw Dynamin and Its Role in Membrane Fission , 2022 .

[60]  P. De Camilli,et al.  The Epsins Define a Family of Proteins That Interact with Components of the Clathrin Coat and Contain a New Protein Module* , 1999, The Journal of Biological Chemistry.

[61]  S. Spanò,et al.  CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid , 1999, Nature.

[62]  A. Podtelejnikov,et al.  Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid , 1999, Nature.

[63]  L. Brodin,et al.  Endophilin/SH3p4 Is Required for the Transition from Early to Late Stages in Clathrin-Mediated Synaptic Vesicle Endocytosis , 1999, Neuron.

[64]  D. Fremont,et al.  Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  K Kobylarz,et al.  Acute cholesterol depletion inhibits clathrin-coated pit budding. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  S. Harrison,et al.  Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. , 1999, Molecular cell.

[67]  Pietro De Camilli,et al.  Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis , 1999, Nature Cell Biology.

[68]  M. Stowell,et al.  Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring , 1999, Nature Cell Biology.

[69]  S. Kornfeld,et al.  ADP-ribosylation factor 1 dependent clathrin-coat assembly on synthetic liposomes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Schmid,et al.  Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis , 1999, Nature.

[71]  B. Deurs,et al.  Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. , 1999, Molecular biology of the cell.

[72]  A. Dautry‐Varsat,et al.  Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. , 1999, The American journal of physiology.

[73]  J. Rothman,et al.  Coupling of Coat Assembly and Vesicle Budding to Packaging of Putative Cargo Receptors , 1999, Cell.

[74]  T. Schroer,et al.  Membrane motors. , 1999, Current opinion in cell biology.

[75]  F. Fahrenholz,et al.  Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles , 1999, Nature Cell Biology.

[76]  S. Emr,et al.  Fab1p PtdIns(3)P 5-Kinase Function Essential for Protein Sorting in the Multivesicular Body , 1998, Cell.

[77]  H. Hauri,et al.  A novel direct interaction of endoplasmic reticulum with microtubules , 1998, The EMBO journal.

[78]  J. Goldberg,et al.  Structural Basis for Activation of ARF GTPase Mechanisms of Guanine Nucleotide Exchange and GTP–Myristoyl Switching , 1998, Cell.

[79]  R. Schekman,et al.  Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Pier Paolo Di Fiore,et al.  Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis , 1998, Nature.

[81]  Mats Wahlgren,et al.  Developmental selection of var gene expression in Plasmodium falciparum , 1998, Nature.

[82]  J. Katzenellenbogen,et al.  Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  P. Camilli,et al.  Generation of Coated Intermediates of Clathrin-Mediated Endocytosis on Protein-Free Liposomes , 1998, Cell.

[84]  E. Salmon,et al.  Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms , 1998, Current Biology.

[85]  J. Hinshaw,et al.  Dynamin Undergoes a GTP-Dependent Conformational Change Causing Vesiculation , 1998, Cell.

[86]  R. Schekman,et al.  COPII-Coated Vesicle Formation Reconstituted with Purified Coat Proteins and Chemically Defined Liposomes , 1998, Cell.

[87]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[88]  R. Schekman,et al.  COPII and secretory cargo capture into transport vesicles. , 1997, Current opinion in cell biology.

[89]  F. Goñi,et al.  Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. , 1997, Biophysical journal.

[90]  B. Antonny,et al.  N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. , 1997, Biochemistry.

[91]  M. Liscovitch Phospholipase D: role in signal transduction and membrane traffic. , 1996, Journal of lipid mediators and cell signalling.

[92]  L. Chernomordik Non-bilayer lipids and biological fusion intermediates. , 1996, Chemistry and physics of lipids.

[93]  M. Roth,et al.  Evidence that phospholipase D mediates ADP ribosylation factor- dependent formation of Golgi coated vesicles , 1996, The Journal of cell biology.

[94]  H. Riezman,et al.  Role of Type I Myosins in Receptor-Mediated Endocytosis in Yeast , 1996, Science.

[95]  F. Wieland,et al.  VIP21/caveolin is a cholesterol-binding protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[96]  R. Parton,et al.  De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[97]  S. Schmid,et al.  Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding , 1995, Nature.

[98]  S. Schmid,et al.  Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals , 1995, Nature.

[99]  P. De Camilli,et al.  Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. , 1995, Nature.

[100]  T. Hasson,et al.  Molecular motors, membrane movements and physiology: emerging roles for myosins. , 1995, Current opinion in cell biology.

[101]  D. Ringe,et al.  Structure of the human ADP-ribosylation factor 1 complexed with GDP , 1994, Nature.

[102]  J. Rothman,et al.  Mechanisms of intracellular protein transport , 1994, Nature.

[103]  S. Schmid,et al.  Induction of mutant dynamin specifically blocks endocytic coated vesicle formation , 1994, The Journal of cell biology.

[104]  J. Tooze,et al.  In AtT20 and HeLa cells brefeldin A induces the fusion of tubular endosomes and changes their distribution and some of their endocytic properties , 1992, The Journal of cell biology.

[105]  Richard G. W. Anderson,et al.  Caveolin, a protein component of caveolae membrane coats , 1992, Cell.

[106]  P. Devaux,et al.  Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. , 1992, Biophysical journal.

[107]  D. S. Williams,et al.  Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration , 1992, The Journal of cell biology.

[108]  J. Lippincott-Schwartz,et al.  Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic , 1991, Cell.

[109]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[110]  R. Vale,et al.  Formation of membrane networks in vitro by kinesin-driven microtubule movement , 1988, The Journal of cell biology.

[111]  J. Keen,et al.  Deep-etch visualization of proteins involved in clathrin assembly , 1988, The Journal of cell biology.

[112]  S. Dabora,et al.  The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts , 1988, Cell.

[113]  L. Molday,et al.  Peripherin. A rim-specific membrane protein of rod outer segment discs. , 1987, Investigative ophthalmology & visual science.

[114]  M. Sheetz,et al.  Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes , 1976, The Journal of cell biology.

[115]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[116]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[117]  T. Kadota,et al.  ISOLATION OF COATED VESICLES, PLAIN SYNAPTIC VESICLES, AND FLOCCULENT MATERIAL FROM A CRUDE SYNAPTOSOME FRACTION OF GUINEA PIG WHOLE BRAIN , 1973, The Journal of cell biology.

[118]  Extracts , 1869, The Indian medical gazette.