Smallest eigenvalues of Hankel matrices for exponential weights
暂无分享,去创建一个
[1] Yang Chen,et al. Small eigenvalues of large Hankel matrices , 1999, math/0009238.
[2] Doron S. Lubinsky,et al. Orthogonal Polynomials for Exponential Weights , 2001 .
[3] P. Koosis. Introduction to H[p] spaces , 1999 .
[4] E. Saff,et al. Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.
[5] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[6] Bernhard Beckermann,et al. The condition number of real Vandermonde, Krylov and positive definite Hankel matrices , 2000, Numerische Mathematik.
[7] Vilmos Totik,et al. Weighted Approximation with Varying Weight , 1994 .
[8] Paul Koosis,et al. Introduction to Hp Spaces , 1999 .
[9] Z. Nehari. Bounded analytic functions , 1950 .
[10] Yang Chen,et al. Small eigenvalues of large Hankel matrices: The indeterminate case , 1999 .
[11] Doron S. Lubinsky. Best approximation and interpolation of (1+(ax)2)-1 and its transforms , 2003, J. Approx. Theory.
[12] Hrushikesh Narhar Mhaskar,et al. Where does the sup norm of a weighted polynomial live? , 1985 .
[13] G. Szegö,et al. On some Hermitian forms associated with two given curves of the complex plane , 1936 .
[14] J. Crank. Tables of Integrals , 1962 .
[15] James S. Harris,et al. Tables of integrals , 1998 .
[16] I. M. Gelfand,et al. Collected Papers, Vol. 2 , 1988 .