Experimental determination of methane dissolution from simulated subsurface oil leakages

[1]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[2]  Steven Chu,et al.  Applications of science and engineering to quantify and control the Deepwater Horizon oil spill , 2012, Proceedings of the National Academy of Sciences.

[3]  Claire B Paris-Limouzy,et al.  Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. , 2012, Environmental science & technology.

[4]  Simone Meinardi,et al.  Atmospheric emissions from the Deepwater Horizon spill constrain air‐water partitioning, hydrocarbon fate, and leak rate , 2011 .

[5]  David L. Valentine,et al.  A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico , 2011, Science.

[6]  M. Tolstoy,et al.  Magnitude of the 2010 Gulf of Mexico Oil Leak , 2010, Science.

[7]  Igor Mezić,et al.  A New Mixing Diagnostic and Gulf Oil Spill Movement , 2010, Science.

[8]  Alistair Adcroft,et al.  Simulations of underwater plumes of dissolved oil in the Gulf of Mexico , 2010 .

[9]  Sheri N. White,et al.  Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals , 2009 .

[10]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[11]  G. A. Jeffrey,et al.  Clathrate Hydrates , 2007 .

[12]  J. Greinert,et al.  Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? , 2006 .

[13]  A. Milkov Global estimates of hydrate-bound gas in marine sediments: how much is really out there? , 2004 .

[14]  S. N. White,et al.  Development of a laser Raman spectrometer for deep-ocean science , 2004 .

[15]  Jens Greinert,et al.  Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes , 2003 .

[16]  Jorge M. T. Vasconcelos,et al.  Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors , 2003 .

[17]  Ira Leifer,et al.  The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study , 2002 .

[18]  Edward T. Peltzer,et al.  Enhanced lifetime of methane bubble streams within the deep ocean , 2002 .

[19]  Ira Leifer,et al.  A Study on the Temperature Variation of Rise Velocity for Large Clean Bubbles , 2000 .

[20]  Paul J. Crutzen,et al.  Changing concentration, lifetime and climate forcing of atmospheric methane , 1998 .

[21]  R. Cicerone,et al.  Biogeochemical aspects of atmospheric methane , 1988 .

[22]  Effects Oil in the Sea III: Inputs, Fates, and Effects , 2003 .

[23]  Øistein Johansen,et al.  DeepSpill––Field Study of a Simulated Oil and Gas Blowout in Deep Water , 2003 .

[24]  E. Peltzer,et al.  Practical Physical Chemistry and Empirical Predictions of Methane Hydrate Stability , 2000 .

[25]  Walter S Borowski,et al.  Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates , 1995 .

[26]  K. Nakamoto,et al.  Introductory Raman Spectroscopy , 1994 .

[27]  Brij B. Maini,et al.  Experimental investigation of hydrate formation behaviour of a natural gas bubble in a simulated deep sea environment , 1981 .

[28]  G. Herzberg Faraday Lecture. Spectra and structures of molecular ions , 1971 .