The emergence of typical entanglement in two-party random processes

We investigate the entanglement within a system undergoing a random, local process. We find that there is initially a phase of very fast generation and spread of entanglement. At the end of this phase the entanglement is typically maximal. In Oliveira et al (2007 Phys. Rev. Lett. 98 130502) we proved that the maximal entanglement is reached to a fixed arbitrary accuracy within O(N3) steps, where N is the total number of qubits. Here we provide a detailed and more pedagogical proof. We demonstrate that one can use the so-called stabilizer gates to simulate this process efficiently on a classical computer. Furthermore, we discuss three ways of identifying the transition from the phase of rapid spread of entanglement to the stationary phase: (i) the time when saturation of the maximal entanglement is achieved, (ii) the cutoff moment, when the entanglement probability distribution is practically stationary, and (iii) the moment block entanglement exhibits volume scaling. We furthermore investigate the mixed state and multipartite setting. Numerically, we find that the mutual information appears to behave similarly to the quantum correlations and that there is a well-behaved phase-space flow of entanglement properties towards an equilibrium. We describe how the emergence of typical entanglement can be used to create a much simpler tripartite entanglement description. The results form a bridge between certain abstract results concerning typical (also known as generic) entanglement relative to an unbiased distribution on pure states and the more physical picture of distributions emerging from random local interactions.

[1]  Seth Lloyd,et al.  Convergence conditions for random quantum circuits , 2005, quant-ph/0503210.

[2]  Andreas J. Winter,et al.  Optimal Superdense Coding of Entangled States , 2006, IEEE Transactions on Information Theory.

[3]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[4]  Ravi Montenegro,et al.  Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..

[5]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[6]  M B Plenio,et al.  Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension. , 2006, Physical review letters.

[7]  D. Gross,et al.  Canonical and micro-canonical typical entanglement of continuous variable systems , 2007, quant-ph/0701051.

[8]  Satoshi Ishizaka Bound entanglement provides convertibility of pure entangled states. , 2004, Physical review letters.

[9]  W Dür,et al.  Spin gases: quantum entanglement driven by classical kinematics. , 2005, Physical review letters.

[10]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[11]  P. Diaconis Group representations in probability and statistics , 1988 .

[12]  ENTANGLEMENT AND DECOHERENCE IN SPIN GASES , 2005, quant-ph/0502017.

[13]  Debbie Leung,et al.  Typical entanglement of stabilizer states , 2005, quant-ph/0510232.

[14]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[15]  M. Plenio,et al.  Teleportation, entanglement and thermodynamics in the quantum world , 1998 .

[16]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[17]  A. Harrow,et al.  Superdense coding of quantum states. , 2003, Physical review letters.

[18]  M. Plenio,et al.  Teleportation Fidelities of Squeezed States from Thermodynamical State Space Measures , 2006, quant-ph/0610090.

[19]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[20]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[21]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[22]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[23]  M. B. Plenio,et al.  Tripartite entanglement and quantum relative entropy , 2000 .

[24]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[25]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[26]  K. Audenaert,et al.  Entanglement properties of the harmonic chain , 2002, quant-ph/0205025.

[27]  Shengjun Wu,et al.  Multipartite pure-state entanglement and the generalized Greenberger-Horne-Zeilinger states , 2000 .

[28]  P. Diaconis,et al.  The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Isaac L. Chuang,et al.  Quantum Information And Computation , 1996 .

[30]  Noah Linden,et al.  Reversibility of Local Transformations of Multiparticle Entanglement , 1999, Quantum Inf. Process..

[31]  J. Gemmer,et al.  Quantum approach to a derivation of the second law of thermodynamics. , 2001, Physical review letters.

[32]  Isaac L. Chuang,et al.  Entanglement in the stabilizer formalism , 2004 .

[33]  J. Eisert,et al.  Entanglement-area law for general bosonic harmonic lattice systems (14 pages) , 2005, quant-ph/0505092.

[34]  P. Hayden,et al.  On the (Im)Possibility of Quantum String Commitment , 2005 .

[35]  E. Lubkin Entropy of an n‐system from its correlation with a k‐reservoir , 1978 .

[36]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[37]  S. Lloyd,et al.  Complexity as thermodynamic depth , 1988 .

[38]  Kanno,et al.  Proof of Page's conjecture on the average entropy of a subsystem. , 1994, Physical review letters.

[39]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[40]  F. Mezzadri,et al.  Random Matrix Theory and Entanglement in Quantum Spin Chains , 2004, quant-ph/0407047.

[41]  Martin B. Plenio,et al.  Multiparticle entanglement manipulation under positive partial transpose preserving operations , 2005 .

[42]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[43]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[44]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[45]  Martin B. Plenio,et al.  Entanglement on mixed stabilizer states: normal forms and reduction procedures , 2005, quant-ph/0505036.

[46]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[47]  M B Plenio,et al.  Generic entanglement can be generated efficiently. , 2007, Physical review letters.

[48]  The foundations of statistical mechanics from entanglement: Individual states vs. averages , 2005, quant-ph/0511225.

[49]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[50]  Pawel Horodecki,et al.  Distillation and bound entanglement , 2001, Quantum Inf. Comput..

[51]  Oscar C. O. Dahlsten,et al.  Entanglement probability distribution of bi-partite randomised stabilizer states , 2006, Quantum Inf. Comput..

[52]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.