The Divnoe Meteorite: Petrology, Chemistry, Oxygen Isotopes and Origin
暂无分享,去创建一个
[1] R. Clayton. Oxygen Isotopes in Meteorites , 2003 .
[2] R. Clayton,et al. Brachinites: A New Primitive Achondrite Group , 1992 .
[3] D. Rubie,et al. Mechanisms of the transformations between the α, β and γ polymorphs of Mg2SiO4 at 15 GPa , 1992 .
[4] N. Clayton,et al. Oxygen isotopic compositions of achondrites. , 1992 .
[5] K. Keil,et al. Shock metamorphism of ordinary chondrites , 1991 .
[6] Mark S. Ghiorso,et al. Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .
[7] K. Keil,et al. Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body , 1991 .
[8] V. I. Fonarev,et al. Progress in metamorphic and magmatic petrology: Two-pyroxene thermometry: a critical evaluation , 1991 .
[9] E. Jarosewich,et al. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .
[10] Alexandra Navrotsky,et al. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application , 1989 .
[11] T. Katsura,et al. The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .
[12] Mark S. Ghiorso,et al. Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2 , 1989 .
[13] P. Warren,et al. Allan Hills 84025 - The second brachinite, far more differentiated than brachina, and an ultramafic achondritic clast from L chondrite Yamato 75097 , 1989 .
[14] Hiroshi Takeda,et al. On the pairing of Antarctic ureilites with refernce to their parent body , 1988 .
[15] H. Takeda. Mineralogy of Antarctic ureilites and a working hypothesis for their origin and evolution , 1987 .
[16] H. Nagahara,et al. Petrology of Yamato-791493, lodranite: Melting, crystallization, cooling history, and relationship to other meteorites , 1986 .
[17] D. Stöffler,et al. Shock metamorphism and petrography of the Shergotty achondrite , 1986 .
[18] A. Treiman,et al. Core formation in the Earth and Shergottite Parent Body (SPB): Chemical evidence from basalts☆ , 1986 .
[19] H. Wänke,et al. Brachina: A new type of meteorite, not a chassignite , 1983 .
[20] G. D. Price. The nature and significance of stacking faults in wadsleyite, natural β-(Mg, Fe)2SiO4 from the Peace River meteorite , 1983 .
[21] J. Poirier,et al. Transmission electron microscope observation of α, β and γ (Mg, Fe)2SiO4 in shocked meteorites: planar defects and polymorphic transitions , 1983 .
[22] Donald H. Lindsley,et al. A two-pyroxene thermometer , 1983 .
[23] A. Graham. Meteoritical Bulletin, No. 63 , 1982 .
[24] A. Putnis,et al. A spinel to β-phase transformation mechanism in (Mg,Fe)2SiO4 , 1982, Nature.
[25] M. Lipschutz,et al. Trace element contents of selected Antarctic meteorites-II: Comparison with non-Antarctic specimens , 1981 .
[26] H. Wänke,et al. The Acapulco meteorite: Chemistry, mineralogy and irradiation effects , 1981 .
[27] A. Putnis,et al. Electron petrography of shock-produced veins in the Tenham chondrite , 1979 .
[28] A. Putnis,et al. High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite , 1979, Nature.
[29] J. Smith,et al. Coorara and Coolamon Meteorites: Ringwoodite and Mineralogical Differences , 1978 .
[30] R. W. Bild,et al. The Lodran meteorite and its relationship to the ureilites , 1976, Mineralogical Magazine.
[31] A. T. Anderson,et al. Oxygen Isotope Thermometry of Mafic Igneous Rocks , 1971, The Journal of Geology.
[32] B. Mason,et al. Pyroxene-Garnet Transformation in Coorara Meteorite , 1970, Science.
[33] R. Binns,et al. Ringwoodite, Natural (Mg,Fe)2SiO4 Spinel in the Tenham Meteorite , 1969, Nature.
[34] A. D.. THE TRACE-ELEMENT COMPOSITION OF EAGLES NEST AND ITS RELATIONSHIP TO OTHER ULTRAMAFIC ACHONDRITES - , 2022 .