A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics

New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and high Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. A numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.

[1]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[2]  Darryl D. Holm Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. , 2002, Chaos.

[3]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[4]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[5]  Stanislav Boldyrev Spectrum of magnetohydrodynamic turbulence. , 2006, Physical review letters.

[6]  Ramon Codina,et al.  Approximation of the thermally coupled MHD problem using a stabilized finite element method , 2011, J. Comput. Phys..

[7]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[8]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[9]  David Sondak,et al.  A residual based eddy viscosity model for the large eddy simulation of turbulent flows , 2014 .

[10]  Santiago Badia,et al.  On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..

[11]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[12]  Sabatino Sofia,et al.  A subgrid‐scale resistivity for magnetohydrodynamics , 1994 .

[13]  Paul T. Lin,et al.  Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..

[14]  Parviz Moin,et al.  Large-eddy simulation of conductive flows at low magnetic Reynolds number , 2004 .

[15]  David Sondak,et al.  Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation , 2012 .

[16]  Jean-François Pinton,et al.  Simulation of induction at low magnetic Prandtl number. , 2004, Physical review letters.

[17]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[18]  Akira Yoshizawa,et al.  Subgrid-Scale Modeling of Magnetohydrodynamic Turbulence , 1991 .

[19]  Alvaro L. G. A. Coutinho,et al.  Edge‐based finite element implementation of the residual‐based variational multiscale method , 2009 .

[20]  Courtenay T. Vaughan,et al.  Zoltan data management services for parallel dynamic applications , 2002, Comput. Sci. Eng..

[21]  W. Mccomb,et al.  Effective viscosity due to local turbulence interactions near the cutoff wavenumber in a constrained numerical simulation , 2000 .

[22]  D. Rosenberg,et al.  The dynamics of unforced turbulence at high Reynolds number for Taylor–Green vortices generalized to MHD , 2009, 0906.1384.

[23]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[24]  Sergey Smolentsev,et al.  MHD thermofluid issues of liquid-metal blankets: Phenomena and advances , 2010 .

[25]  P. Mininni,et al.  Paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  A. Oberai,et al.  A mixed large eddy simulation model based on the residual-based variational multiscale formulation , 2010 .

[27]  Masaru Kono,et al.  RECENT GEODYNAMO SIMULATIONS AND OBSERVATIONS OF THE GEOMAGNETIC FIELD , 2002 .

[28]  Paul Lin,et al.  Performance of fully coupled domain decomposition preconditioners for finite element transport/reaction simulations , 2005 .

[29]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[30]  John N. Shadid,et al.  On a multilevel preconditioning module for unstructured mesh Krylov solvers: two-level Schwarz , 2002 .

[31]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[32]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[33]  Santiago Badia,et al.  Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows , 2015 .

[34]  Wolfram Schmidt,et al.  Large Eddy Simulations in Astrophysics , 2014, 1404.2483.

[35]  Onkar Sahni,et al.  Variational Multiscale Analysis: The Fine-Scale Green's Function for Stochastic Partial Differential Equations , 2013, SIAM/ASA J. Uncertain. Quantification.

[36]  Annick Pouquet,et al.  Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[38]  A. Beresnyak,et al.  Spectral slope and Kolmogorov constant of MHD turbulence. , 2010, Physical review letters.

[39]  L. Driel-Gesztelyi An Introduction to Magnetohydrodynamics , 2004 .

[40]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[41]  R. Codina,et al.  Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics , 2015 .

[42]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[43]  V Dallas,et al.  Origins of the k(-2) spectrum in decaying Taylor-Green magnetohydrodynamic turbulent flows. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[45]  Assad A. Oberai,et al.  A dynamic approach for evaluating parameters in a numerical method , 2005 .

[46]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[47]  梶島 岳夫 乱流の数値シミュレーション = Numerical simulation of turbulent flows , 2003 .

[48]  Paul Lin,et al.  A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: Drift‐diffusion, flow/transport/reaction, resistive MHD , 2010 .

[49]  Ian Hutchinson,et al.  Principles of Magnetohydrodynamics , 2005 .

[50]  Shigeo Asai,et al.  Magnetohydrodynamics in Materials Processing , 2012 .

[51]  Daniele Carati,et al.  Large-eddy simulation of magnetohydrodynamic turbulence , 2002 .

[52]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[53]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[54]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[55]  Dieter Biskamp,et al.  Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence , 2000 .

[56]  Ramon Codina,et al.  Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations , 2006 .

[57]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[58]  A. Oberai,et al.  Spectral analysis of the dissipation of the residual-based variational multiscale method , 2010 .

[59]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[60]  Hussein Aluie,et al.  Scale locality of magnetohydrodynamic turbulence. , 2009, Physical review letters.

[61]  L. Chacón,et al.  A non-staggered, conservative, V×B=0' finite-volume scheme for 3D implicit extended magnetohydrodynamics in curvilinear geometries , 2004, Comput. Phys. Commun..

[62]  Nils Erland L. Haugena,et al.  Hydrodynamic and hydromagnetic energy spectra from large eddy simulations , 2006 .

[63]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[64]  A Pouquet,et al.  Spectral modeling of magnetohydrodynamic turbulent flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Paul Lin,et al.  Large-scale stabilized FE computational analysis of nonlinear steady state transport/reaction systems. , 2004 .

[66]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[67]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[68]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[69]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[70]  P. Mininni,et al.  Lack of universality in decaying magnetohydrodynamic turbulence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  John N. Shadid,et al.  Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG , 2016 .

[72]  Kai Schneider,et al.  Craya decomposition using compactly supported biorthogonal wavelets , 2010 .