Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context

In this paper, we study robust estimators of the memory parameter d of a (possibly) non stationary Gaussian time series with generalized spectral density f. This generalized spectral density is characterized by the memory parameter d and by a function f* which specifies the short-range dependence structure of the process. Our setting is semi-parametric since both f* and d are unknown and d is the only parameter of interest. The memory parameter d is estimated by regressing the logarithm of the estimated variance of the wavelet coefficients at different scales. The two estimators of d that we consider are based on robust estimators of the variance of the wavelet coefficients, namely the square of the scale estimator proposed by Rousseeuw and Croux (1993) and the median of the square of the wavelet coefficients. We establish a Central Limit Theorem for these robust estimators as well as for the estimator of d based on the classical estimator of the variance proposed by Moulines, Roueff and Taqqu (2007). Some Monte-Carlo experiments are presented to illustrate our claims and compare the performance of the different estimators. The properties of the three estimators are also compared on the Nile River data and the Internet traffic packet counts data. The theoretical results and the empirical evidence strongly suggest using the robust estimators as an alternative to estimate the memory parameter d of Gaussian time series.

[1]  Céline Lévy-Leduc,et al.  Robust estimation of the scale and of the autocovariance function of Gaussian short‐ and long‐range dependent processes , 2009, 0912.4686.

[2]  Cheolwoo Park,et al.  Robust estimation of the Hurst parameter and selection of an onset scaling. , 2009 .

[3]  Francisco Cribari-Neto,et al.  Robust estimation in long-memory processes under additive outliers , 2009 .

[4]  Eric Moulines,et al.  Estimators of Long-Memory: Fourier versus Wavelets , 2008, 0801.4329.

[5]  Jean‐François Coeurjolly Bahadur representation of sample quantiles for functional of Gaussian dependent sequences under a minimal assumption , 2007, math/0702440.

[6]  Zhengyuan Zhu,et al.  Robust estimation of the self-similarity parameter in network traffic using wavelet transform , 2007, Signal Process..

[7]  J. S. Marron,et al.  Visualization and inference based on wavelet coefficients, SiZer and SiNos , 2007, Comput. Stat. Data Anal..

[8]  F. Roueff,et al.  Estimation of the memory parameter of the infinite-source Poisson process , 2005, math/0509371.

[9]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[10]  J. S. Marron,et al.  LASS: a tool for the local analysis of self-similarity , 2006, Comput. Stat. Data Anal..

[11]  Rolf Turner,et al.  A test for additive outliers applicable to long-memory time series , 2006 .

[12]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[13]  J. S. Marron,et al.  On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of Internet traffic , 2005, Comput. Networks.

[14]  J. Coeurjolly,et al.  HURST EXPONENT ESTIMATION OF LOCALLY SELF-SIMILAR GAUSSIAN PROCESSES USING SAMPLE QUANTILES , 2005, math/0506290.

[15]  Murad S. Taqqu,et al.  Asymptotic self‐similarity and wavelet estimation for long‐range dependent fractional autoregressive integrated moving average time series with stable innovations , 2005 .

[16]  Sfindor Cs rg The empirical process of a short-range dependent stationary sequence under Gaussian subordination , 2005 .

[17]  Robust estimation of ARFIMA processes , 2003 .

[18]  Jean-Marc Bardet,et al.  Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.

[19]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[20]  M. Genton,et al.  Highly Robust Estimation of the Autocovariance Function , 2000 .

[21]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[22]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[23]  Liudas Giraitis,et al.  RATE OPTIMAL SEMIPARAMETRIC ESTIMATION OF THE MEMORY PARAMETER OF THE GAUSSIAN TIME SERIES WITH LONG‐RANGE DEPENDENCE , 1997 .

[24]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[25]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[26]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[27]  M. A. Arcones,et al.  Limit Theorems for Nonlinear Functionals of a Stationary Gaussian Sequence of Vectors , 1994 .

[28]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[29]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[30]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[31]  J. Beran Statistical methods for data with long-range dependence , 1992 .

[32]  P. Brockwell,et al.  Time Series: Theory and Methods , 2013 .

[33]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[34]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .

[35]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[36]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .