Rate of Convergence of the Expected Spectral Distribution Function to the Marchenko -- Pastur Law

Let $\mathbf X=(X_{jk})$ denote a $n\times p$ random matrix with entries $X_{jk}$, which are independent for $1\le j\le n, 1\le k\le p$. Let $n,p$ tend to infinity such that $\frac np=y+O(n^{-1})\in(0,1]$. For those values of $n,p$ we investigate the rate of convergence of the expected spectral distribution function of the matrix $\mathbf W=\frac1{ p}\mathbf X\mathbf X^*$ to the Marchenko-Pastur law with parameter $y$. Assuming the conditions $\mathbf E X_{jk}=0$, $\mathbf E X_{jk}^2=1$ and $ \quad \quad \quad \quad \quad \quad \quad \sup_{n,p\ge1}\sup_{1\le j\le n,1\le k\le p}\mathbf E |X_{jk}|^4=: \mu_4<\infty,\quad \sup_{n,p\ge1} \sup_{1\le j\le n,1\le k\le p}|X_{jk}|\le D n^{\frac14},$ we show that the Kolmogorov distance between the expected spectral distribution of the sample covariance matrix $\mathbf W$ and the Marchenko -- Pastur law is of order $O(n^{-1})$.

[1]  S. Bobkov,et al.  On Concentration of Empirical Measures and Convergence to the Semi-circle Law , 2010 .

[2]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[3]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[4]  Optimal bounds for convergence of expected spectral distributions to the semi-circular law , 2014, 1511.03692.

[5]  W. Johnson Best Constants in Moment Inequalities for Linear Combinations of Independent and Exchangeable Random Variables , 1985 .

[6]  Friedrich Götze,et al.  The rate of convergence for spectra of GUE and LUE matrix ensembles , 2005 .

[7]  Jonas Gustavsson Gaussian fluctuations of eigenvalues in the GUE , 2004 .

[8]  Friedrich Götze,et al.  Rate of convergence to the semi-circular law , 2003 .

[9]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[10]  F. Götze,et al.  Rate of convergence in probability to the Marchenko-Pastur law , 2004 .

[11]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[12]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .

[13]  Best constant in the decoupling inequality for non-negative random variables , 1990 .

[14]  On the rate of convergence of the expected spectral distribution function of a Wigner matrix to the semi-circular law , 2009 .

[15]  V. L. GIRKO Extended proof of the Statement: Convergence rate of the expected spectral functions of symmetric random matrices Ξ n is equal to O (n—1/2) and the method of critical steepest descent , 2002 .

[16]  F. Gotze,et al.  On the Rate of Convergence to the Marchenko--Pastur Distribution , 2011, 1110.1284.

[17]  Roger A. Horn,et al.  Topics in matrix analysis: Hints for problems , 1991 .

[18]  Optimal Bounds on the Stieltjes Transform of Wigner Matrices , 2013 .

[19]  F. Gotze,et al.  Rate of Convergence of the Empirical Spectral Distribution Function to the Semi-Circular Law , 2014, 1407.2780.

[20]  F. Gotze,et al.  THE RATE OF CONVERGENCE OF SPECTRA OF SAMPLE COVARIANCE MATRICES , 2007, 0712.3725.

[21]  Z. Bai,et al.  Convergence rate of expected spectral distributions of large random matrices , 2008 .