FPGA Implementation of an Interior-Point Solution for Linear Model Predictive Control

Abstract The work here is directed at examining a model predictive control (MPC) implementation that takes advantage of recent advances in the availability of high performance computing platforms at modest cost. The focus here is on the potential for developing custom architecture solutions on field programmable gate array (FPGA) platforms. This is illustrated by demonstrating the solution of a disturbance rejection problem on a real 14'th order lightly damped resonant system at 200μs sampling rate, using only 30μs to compute the control action.

[1]  B. Eaves On Quadratic Programming , 1971 .

[2]  K.V. Ling,et al.  A FPGA implementation of model predictive control , 2006, 2006 American Control Conference.

[3]  Philip A. Nelson,et al.  Active control of vibration, 1st edition , 1996 .

[4]  Brett Ninness,et al.  Fast Linear Model Predictive Control Via Custom Integrated Circuit Architecture , 2012, IEEE Transactions on Control Systems Technology.

[5]  Leonidas G. Bleris,et al.  A System-on-a-Chip Implementation for Embedded Real-Time Model Predictive Control , 2009, IEEE Transactions on Control Systems Technology.

[6]  Eric C. Kerrigan,et al.  More Flops or More Precision? Accuracy Parameterizable Linear Equation Solvers for Model Predictive Control , 2009, 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines.

[7]  Tor Arne Johansen,et al.  Hardware Synthesis of Explicit Model Predictive Controllers , 2007, IEEE Transactions on Control Systems Technology.

[8]  Keith D. Underwood,et al.  FPGAs vs. CPUs: trends in peak floating-point performance , 2004, FPGA '04.

[9]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[10]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[11]  Brett Ninness,et al.  Maximum Likelihood estimation of state space models from frequency domain data , 2009, 2007 European Control Conference (ECC).

[12]  Jan M. Maciejowski,et al.  A comparison of interior point and active set methods for FPGA implementation of model predictive control , 2009, 2009 European Control Conference (ECC).

[13]  S. O. Reza Moheimani,et al.  Model Predictive Control Applied to Constraint Handling in Active Noise and Vibration Control , 2008, IEEE Transactions on Control Systems Technology.

[14]  Brett Ninness,et al.  A MATLAB Software Environment for System Identification , 2009 .

[15]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[16]  David Q. Mayne,et al.  Correction to "Constrained model predictive control: stability and optimality" , 2001, Autom..

[17]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[18]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[19]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[20]  Adrian Wills,et al.  Barrier function based model predictive control , 2004, Autom..

[21]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[22]  George A. Constantinides,et al.  Tutorial paper: Parallel architectures for model predictive control , 2009, 2009 European Control Conference (ECC).

[23]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[24]  Tomas McKelvey,et al.  State-space parametrizations of multivariable linear systems using tridiagonal matrix forms , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[25]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[26]  Brett Ninness,et al.  ASIC and FPGA implementation strategies for Model Predictive Control , 2009, 2009 European Control Conference (ECC).