An improved method for acquiring cerebrovascular reactivity maps

This study aims to improve the method used to produce cerebrovascular reactivity (CVR) maps by MRI. Previous methods have used a standard boxcar presentation of carbon dioxide (CO2). Here this is replaced with a sinusoidally modulated CO2 stimulus. This allowed the use of Fourier analysis techniques to measure both the amplitude and phase delay of the BOLD CVR response, and hence characterize the arrival sequence of blood to different regions of the brain. This characterization revealed statistically significant relative delays between regions of the brain (ANOVA < 0.0001). In addition, post hoc comparison showed that the frontal (P < 0.001) and parietal (P = 0.004) lobes reacted earlier than the occipital lobe. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.

[1]  Benedikt A. Poser,et al.  Investigating the benefits of multi-echo EPI for fMRI at 7 T , 2009, NeuroImage.

[2]  S. Posse,et al.  Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging , 1999, Magnetic resonance in medicine.

[3]  G. Volgyesi,et al.  MRI mapping of cerebrovascular reactivity using square wave changes in end‐tidal PCO2 , 2001, Magnetic resonance in medicine.

[4]  R B Banzett,et al.  Simple contrivance "clamps" end-tidal PCO(2) and PO(2) despite rapid changes in ventilation. , 2000, Journal of applied physiology.

[5]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[6]  David J Mikulis,et al.  Preoperative and postoperative mapping of cerebrovascular reactivity in moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging. , 2005, Journal of neurosurgery.

[7]  T. Neumann-Haefelin,et al.  Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO(2) and breath holding. , 2001, Magnetic resonance imaging.

[8]  Daniel Gallichan,et al.  Variation in the shape of pulsed arterial spin labeling kinetic curves across the healthy human brain and its implications for CBF quantification , 2009, Magnetic resonance in medicine.

[9]  Jeff H. Duyn,et al.  Characterization of regional heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task and BOLD fMRI , 2009, NeuroImage.

[10]  David J Mikulis,et al.  Mapping Cerebrovascular Reactivity Using Blood Oxygen Level-Dependent MRI in Patients With Arterial Steno-occlusive Disease: Comparison With Arterial Spin Labeling MRI , 2008, Stroke.

[11]  Shoji Ito,et al.  Non‐invasive prospective targeting of arterial P  CO 2 in subjects at rest , 2008, The Journal of physiology.

[12]  Richard S. Frackowiak,et al.  A bilateral cortico-bulbar network associated with breath holding in humans, determined by functional magnetic resonance imaging , 2008, NeuroImage.

[13]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[14]  Uwe Aickelin,et al.  Tailored RF pulse for magnetization inversion at ultrahigh field , 2010, Magnetic resonance in medicine.

[15]  H S Markus,et al.  Mapping of cerebrovascular reactivity using BOLD magnetic resonance imaging. , 1999, Magnetic resonance imaging.

[16]  Oliver Speck,et al.  Blood Oxygen Level–Dependent MRI of Cerebral CO2 Reactivity in Severe Carotid Stenosis and Occlusion , 2005, Stroke.

[17]  Stephen D. Mayhew,et al.  Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging , 2009, NeuroImage.

[18]  Joseph A. Fisher,et al.  The change in cerebrovascular reactivity between 3 T and 7 T measured using graded hypercapnia , 2010, NeuroImage.

[19]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[20]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[22]  Eitan Prisman,et al.  Comparison of the effects of independently‐controlled end‐tidal PCO2 and PO2 on blood oxygen level–dependent (BOLD) MRI , 2008, Journal of magnetic resonance imaging : JMRI.

[23]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[24]  M. Blinkenberg,et al.  Regional Differences in the CBF and BOLD Responses to Hypercapnia: A Combined PET and fMRI Study , 2000, NeuroImage.

[25]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[26]  C. K. Mahutte,et al.  Arterial blood gas changes during breath-holding from functional residual capacity. , 1996, Chest.

[27]  James Duffin,et al.  Prospective targeting and control of end‐tidal CO2 and O2 concentrations , 2007, The Journal of physiology.

[28]  Michalis Xenos,et al.  Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains , 2006, Journal of magnetic resonance imaging : JMRI.

[29]  David J Mikulis,et al.  BOLD-MRI cerebrovascular reactivity findings in cocaine-induced cerebral vasculitis , 2008, Nature Clinical Practice Neurology.

[30]  Esben Thade Petersen,et al.  Cerebral border zones between distal end branches of intracranial arteries: MR imaging. , 2008, Radiology.