Formal Inverse Integrating Factor and the Nilpotent Center Problem

We are interested in deepening the knowledge of methods based on formal power series applied to the nilpotent center problem of planar local analytic monodromic vector fields 𝒳. As formal integrability is not enough to characterize such a center we use a more general object, namely, formal inverse integrating factors V of 𝒳. Although by the existence of V it is not possible to describe all nilpotent centers strata, we simplify, improve and also extend previous results on the relationship between these concepts. We use in the performed analysis the so-called Andreev number n ∈ ℕ with n ≥ 2 associated to 𝒳 which is invariant under orbital equivalency of 𝒳. Besides the leading terms in the (1,n)-quasihomogeneous expansions that V can have, we also prove the following: (i) If n is even and there exists V then 𝒳 has a center; (ii) if n = 2, the existence of V characterizes all the centers; (iii) if there is a V with minimum “vanishing multiplicity” at the singularity then, generically, 𝒳 has a center.

[1]  I. A. García,et al.  A new approach to center conditions for simple analytic monodromic singularities , 2010 .

[2]  Jaume Llibre,et al.  The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems , 2005, math/0506116.

[3]  Joan Torregrosa,et al.  A new algorithm for the computation of the Lyapunov constants for some degenerated critical points , 2001 .

[4]  Yirong Liu,et al.  New Study on the Center Problem and bifurcations of Limit Cycles for the Lyapunov System (I) , 2009, Int. J. Bifurc. Chaos.

[5]  R. Moussu,et al.  Réversibilité et classification des centres nilpotents , 1994 .

[6]  M. J. Álvarez,et al.  Generating limit cycles from a nilpotent critical point via normal forms , 2006 .

[7]  Isaac A. García,et al.  A Survey on the Inverse Integrating Factor , 2009, 0903.0941.

[8]  R. Moussu,et al.  Symétrie et forme normale des centres et foyers dégénérés , 1982, Ergodic Theory and Dynamical Systems.

[9]  A. Algaba,et al.  Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems , 2012 .

[10]  H. Zoladek,et al.  The Analytic and Formal Normal Form for the Nilpotent Singularity , 2002 .

[11]  Marco Antonio Teixeira,et al.  The Center-Focus Problem and Reversibility , 2001 .

[12]  Existence and vanishing set of inverse integrating factors for analytic vector fields , 2009 .

[13]  Floris Takens,et al.  Singularities of vector fields , 1974 .

[14]  M. Grau,et al.  Generalized Hopf Bifurcation for Planar Vector Fields via the Inverse Integrating Factor , 2009, 0902.0681.

[15]  Armengol Gasull,et al.  Monodromy and Stability for Nilpotent Critical Points , 2005, Int. J. Bifurc. Chaos.

[16]  J. Llibre,et al.  Polynomial and rational first integrals for planar homogeneous polynomial differential systems , 2013 .

[17]  Henryk Żoładek Algebraic invariant curves for the Liénard equation , 1998 .

[18]  M. Grau,et al.  The inverse integrating factor and the Poincaré map , 2007, 0710.3238.

[19]  Yirong Liu,et al.  New Study on the Center Problem and bifurcations of Limit Cycles for the Lyapunov System (II) , 2009, Int. J. Bifurc. Chaos.

[20]  A. M. Li︠a︡punov Stability of Motion , 2016 .

[21]  R. Moussu,et al.  Holonomie et intégrales premières , 1980 .

[22]  Yirong Liu,et al.  On Third-Order Nilpotent Critical Points: Integral Factor Method , 2011, Int. J. Bifurc. Chaos.