A new method to integrate ZnO nano-tetrapods on MEMS micro-hotplates for large scale gas sensor production

A new method, which is easily scalable to large scale production, has been developed to obtain gas sensor devices based on zinc oxide (ZnO) nanostructures with a 'tetrapod' shape. The method can be easily extended to other kinds of nanostructures and is based on the deposition of ZnO nanostructures through polymeric masks by centrifugation, directly onto properly designed MEMS micro-hotplates. The micromachined devices, after the mask is peeled off, are ready for electrical bonding and sensing test. Sensor response has been successfully measured for some gases and volatile organic compounds with different chemical properties (ethanol, methane, nitrogen dioxide, hydrogen sulfide).

[1]  Hildegard D. Jander,et al.  A test system for gas sensors , 1995 .

[2]  Anoop Lal Vyas,et al.  Integration of ZnO nanostructures with MEMS for ethanol sensor , 2012 .

[3]  G. Shen,et al.  Transparent metal oxide nanowire transistors. , 2012, Nanoscale.

[4]  Po-Chiang Chen,et al.  Devices and chemical sensing applications of metal oxide nanowires , 2009 .

[5]  Byeong Kwon Ju,et al.  Gas sensing properties of SnO2 nanowires on micro-heater , 2011 .

[6]  R. Moos,et al.  Ceramic meso hot-plates for gas sensors , 2004 .

[7]  Sanjay Mathur,et al.  Facile integration of ordered nanowires in functional devices , 2015 .

[8]  I. Kostic,et al.  Patterning of titanium oxide nanostructures by electron-beam lithography combined with plasma etching , 2015 .

[9]  Byeong Kwon Ju,et al.  Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater , 2011 .

[10]  Andrea Zappettini,et al.  Growth of ZnO tetrapods for nanostructure-based gas sensors , 2010 .

[11]  S. G. Chatterjee,et al.  Graphene–metal oxide nanohybrids for toxic gas sensor: A review , 2015 .

[12]  Paul Muralt,et al.  Fabrication and characterization of PZT thin-film vibrators for micromotors , 1995 .

[13]  Wei-Han Tao,et al.  H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining , 2002 .

[14]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[15]  Vincenzo Guidi,et al.  ZnO gas sensors: A comparison between nanoparticles and nanotetrapods-based thick films , 2009 .

[16]  Marco Villani,et al.  Low Temperature Sensing Properties of a Nano Hybrid Material Based on ZnO Nanotetrapods and Titanyl Phthalocyanine , 2013, Sensors.

[17]  Dai Ying,et al.  Quasi One-dimensional ZnO Nanostructures Fabricated without Catalyst at Lower Temperature , 2006 .

[18]  J. Gardner,et al.  Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes , 2015 .

[19]  R. Kumar,et al.  Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review , 2014, Nano-Micro Letters.

[20]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[21]  A. W. Groenland,et al.  Stability of thin platinum films implemented in high-temperature microdevices , 2009 .

[22]  I. Park,et al.  Multiplexed gas sensor based on heterogeneous metal oxide nanomaterial array enabled by localized liquid-phase reaction. , 2015, ACS applied materials & interfaces.

[23]  N. Tiwale,et al.  Zinc oxide nanowire gas sensors: Fabrication, functionalisation and devices , 2015 .

[24]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[25]  E. Llobet,et al.  Nanoparticle metal-oxide films for micro-hotplate-based gas sensor systems , 2005, IEEE Sensors Journal.

[26]  C. Pirri,et al.  Polymeric mask protection for alternative KOH silicon wet etching , 2007 .

[27]  Andrea Zappettini,et al.  Aldehyde detection by ZnO tetrapod-based gas sensors , 2011 .

[28]  Xiao‐Yu Yang,et al.  One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications , 2012 .

[29]  L. Lazzarini,et al.  Selective response inversion to NO2 and acetic acid in ZnO and CdS nanocomposite gas sensor , 2014, Nanotechnology.

[30]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[31]  Y. Im,et al.  Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. , 2008, Small.

[32]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[33]  Wei Huang,et al.  Recent progress in the ZnO nanostructure-based sensors , 2011 .

[34]  S. Bakaul,et al.  Oxide nanowires for spintronics: materials and devices. , 2012, Nanoscale.

[35]  Jong-Heun Lee,et al.  Design of Highly Sensitive C2H5OH Sensors Using Self-Assembled ZnO Nanostructures , 2011, Sensors.

[36]  N. Bârsan,et al.  Micromachined metal oxide gas sensors: opportunities to improve sensor performance , 2001 .

[37]  E. Llobet,et al.  Localized aerosol-assisted CVD of nanomaterials for the fabrication of monolithic gas sensor microarrays , 2015 .

[38]  Ulrich Mescheder,et al.  Micromachined Hotplate Platform for the Investigation of Ink-Jet Printed, Functionalized Metal Oxide Nanoparticles , 2015, Journal of Microelectromechanical Systems.

[39]  Oleg Lupan,et al.  A single ZnO tetrapod-based sensor , 2009 .

[40]  D. Briand,et al.  Micro-hotplates—A platform for micro-solid oxide fuel cells , 2007 .

[41]  G. Sberveglieri,et al.  Tungsten Oxide Nanowires on Micro Hotplates for Gas Sensing Applications , 2015 .

[42]  Veaceslav Ursaki,et al.  Functionalized individual ZnO microwire for natural gas detection , 2012 .