The LED Block Cipher

We present a new block cipher LED. While dedicated to compact hardware implementation, and offering the smallest silicon footprint among comparable block ciphers, the cipher has been designed to simultaneously tackle three additional goals. First, we explore the role of an ultra-light (in fact non-existent) key schedule. Second, we consider the resistance of ciphers, and LED in particular, to related-key attacks: we are able to derive simple yet interesting AES-like security proofs for LED regarding related- or single-key attacks. And third, while we provide a block cipher that is very compact in hardware, we aim to maintain a reasonable performance profile for software implementation.

[1]  Axel Poschmann,et al.  Lightweight cryptography: cryptographic engineering for a pervasive world , 2009, IACR Cryptol. ePrint Arch..

[2]  Jongsung Kim,et al.  HIGHT: A New Block Cipher Suitable for Low-Resource Device , 2006, CHES.

[3]  Guang Gong,et al.  Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained Devices , 2010, Financial Cryptography Workshops.

[4]  Markku-Juhani O. Saarinen Cryptanalysis of Hummingbird-1 , 2010, FSE.

[5]  Alex Biryukov,et al.  Related-Key Cryptanalysis of the Full AES-192 and AES-256 , 2009, ASIACRYPT.

[6]  Martin Hell,et al.  The Grain Family of Stream Ciphers , 2008, The eSTREAM Finalists.

[7]  Seokhie Hong,et al.  Fast Software Encryption, 17th International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Selected Papers , 2010, FSE.

[8]  Yee Wei Law,et al.  KLEIN: A New Family of Lightweight Block Ciphers , 2010, RFIDSec.

[9]  Vincent Rijmen,et al.  The Block Cipher Square , 1997, FSE.

[10]  María Naya-Plasencia,et al.  Cryptanalysis of ARMADILLO2 , 2011, ASIACRYPT.

[11]  Adi Shamir,et al.  A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony , 2010, CRYPTO.

[12]  Christophe De Cannière,et al.  KATAN and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers , 2009, CHES.

[13]  Willi Meier,et al.  Cube Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium , 2009, FSE.

[14]  Florian Mendel,et al.  The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl , 2009, FSE.

[15]  Thomas Johansson,et al.  Fast Software Encryption, FSE 2003 , 2003 .

[16]  Alex Biryukov,et al.  Slide Attacks , 1999, FSE.

[17]  Vincent Rijmen,et al.  Rebound Distinguishers: Results on the Full Whirlpool Compression Function , 2009, ASIACRYPT.

[18]  Stéphane Badel,et al.  ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware , 2010, CHES.

[19]  Martin Ågren Some Instant- and Practical-Time Related-Key Attacks on KTANTAN32/48/64 , 2011, Selected Areas in Cryptography.

[20]  Ivica Nikolic,et al.  Rotational Cryptanalysis of ARX , 2010, FSE.

[21]  Matthew J. B. Robshaw,et al.  Searching for Compact Algorithms: cgen , 2006, VIETCRYPT.

[22]  Matthew J. B. Robshaw,et al.  New Stream Cipher Designs: The eSTREAM Finalists , 2008 .

[23]  Christof Paar,et al.  Pushing the Limits: A Very Compact and a Threshold Implementation of AES , 2011, EUROCRYPT.

[24]  G. Gong,et al.  Ultra-Lightweight Cryptography for Low-Cost RFID Tags : Hummingbird Algorithm and Protocol , 2009 .

[25]  Thomas Peyrin,et al.  Practical Cryptanalysis of ARMADILLO2 , 2012, FSE.

[26]  Christof Paar,et al.  Ultra-Lightweight Implementations for Smart Devices - Security for 1000 Gate Equivalents , 2008, CARDIS.

[27]  Stafford E. Tavares,et al.  Proceedings of the Selected Areas in Cryptography , 1998 .

[28]  Thomas Peyrin,et al.  Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations , 2010, FSE.

[29]  Sangjin Lee,et al.  Improving the Upper Bound on the Maximum Differential and the Maximum Linear Hull Probability for SPN Structures and AES , 2003, FSE.

[30]  Willi Meier,et al.  Quark: A Lightweight Hash , 2010, Journal of Cryptology.

[31]  Thomas Peyrin,et al.  The PHOTON Family of Lightweight Hash Functions , 2011, IACR Cryptol. ePrint Arch..

[32]  Panu Hämäläinen,et al.  Design and Implementation of Low-Area and Low-Power AES Encryption Hardware Core , 2006, 9th EUROMICRO Conference on Digital System Design (DSD'06).

[33]  Chae Hoon Lim,et al.  mCrypton - A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors , 2005, WISA.

[34]  Christof Paar,et al.  New Lightweight DES Variants , 2007, FSE.

[35]  William Millan,et al.  Strengthening the Key Schedule of the AES , 2002, ACISP.

[36]  Vincent Rijmen,et al.  The WHIRLPOOL Hashing Function , 2003 .

[37]  Ivica Nikolic,et al.  Tweaking AES , 2010, Selected Areas in Cryptography.

[38]  Thomas Peyrin,et al.  Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher , 2009, Selected Areas in Cryptography.

[39]  Vincent Rijmen,et al.  Known-Key Distinguishers for Some Block Ciphers , 2007, ASIACRYPT.

[40]  Alex Biryukov,et al.  Advanced Slide Attacks , 2000, EUROCRYPT.

[41]  Daniel W. Engels,et al.  The Hummingbird-2 Lightweight Authenticated Encryption Algorithm , 2011, RFIDSec.

[42]  Anne Canteaut,et al.  Higher-Order Differential Properties of Keccak and Luffa , 2011, FSE.

[43]  Matthew J. B. Robshaw,et al.  PRINTcipher: A Block Cipher for IC-Printing , 2010, CHES.

[44]  Joan Daemen,et al.  AES Proposal : Rijndael , 1998 .

[45]  Matt Henricksen,et al.  AES Variants Secure against Related-Key Differential and Boomerang Attacks , 2011, WISTP.

[46]  Andrey Bogdanov,et al.  PRESENT: An Ultra-Lightweight Block Cipher , 2007, CHES.

[47]  Jean-Jacques Quisquater,et al.  ASIC Implementations of the Block Cipher SEA for Constrained Applications , 2007 .