A Modified Fractional Step Method for the Accurate Approximation of Detonation Waves
暂无分享,去创建一个
Randall J. LeVeque | Gerald Warnecke | Christiane Helzel | R. LeVeque | G. Warnecke | Christiane Helzel
[1] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[2] Matania Ben-Artzi,et al. The generalized Riemann problem for reactive flows , 1989 .
[3] Joseph Falcovitz,et al. Recent Developments of the GRP Method , 1995 .
[4] Elaine S. Oran,et al. Numerical Simulation of Reactive Flow , 1987 .
[5] Alexandre J. Chorin,et al. Random choice solution of hyperbolic systems , 1976 .
[6] Tariq D. Aslam,et al. High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries , 1997 .
[7] R. LeVeque,et al. Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .
[8] Björn Sjögreen,et al. Numerical approximation of hyperbolic conservation laws with stiff terms , 1991 .
[9] Shi Jin,et al. The Random Projection Method for Stiff Detonation Capturing , 2001, SIAM J. Sci. Comput..
[10] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .
[11] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[12] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[13] Rolf Jeltsch,et al. Error estimators for the position of discontinuities in hyperbolic conservation laws with source terms which are solved using operator splitting , 1999 .
[14] A. Gautschy,et al. Computational methods for astrophysical fluid flow , 1998 .
[15] R. LeVeque. Numerical methods for conservation laws , 1990 .
[16] Tariq D. Aslam,et al. Detonation shock dynamics and comparisons with direct numerical simulation , 1999 .
[17] Weizhu Bao,et al. The Random Projection Method for Stiff Detonation Waves , 2002 .
[18] A. Bourlioux,et al. Numerical study of unstable detonations , 1991 .
[19] Richard B. Pember,et al. Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..
[20] E. F. Kaasschieter,et al. Detonation capturing for stiff combustion chemistry , 1998 .
[21] Randall J. LeVeque,et al. A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .
[22] V. Ton,et al. Improved Shock-Capturing Methods for Multicomponent and Reacting Flows , 1996 .
[23] Ac Arco Berkenbosch. Capturing detonation waves for the reactive Euler equations , 1995 .
[24] Weizhu Bao,et al. The Random Projection Method for Hyperbolic Conservation Laws with Stiff Reaction Terms , 2000 .
[25] R. LeVeque. Wave Propagation Algorithms for Multidimensional Hyperbolic Systems , 1997 .
[26] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[27] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[28] Randall J. LeVeque,et al. One-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods , 1995, SIAM J. Sci. Comput..
[29] P. Colella,et al. Theoretical and numerical structure for reacting shock waves , 1986 .