Recent advances in material and performance aspects of solid oxide fuel cells

[1]  P. Debenedetti,et al.  Cross-flow, solid-state electrochemical reactors: a steady state analysis , 1985 .

[2]  Mixed Conducting Ceramics,et al.  Proceedings of the Second International Symposium on Ionic and Mixed Conducting Ceramics , 1991 .

[3]  R. Adapa,et al.  Control of parallel connected inverters in stand-alone AC supply systems , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[4]  Romesh Kumar,et al.  Thermal‐Hydraulic Model of a Monolithic Solid Oxide Fuel Cell , 1991 .

[5]  B. Steele,et al.  Oxygen transport in selected nonstoichiometric perovskite-structure oxides , 1992 .

[6]  M. Ippommatsu,et al.  Evaluation of a New Solid Oxide Fuel Cell System by Non‐isothermal Modeling , 1992 .

[7]  N. Minh Ceramic Fuel Cells , 1993 .

[8]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[9]  Elisabetta Arato,et al.  Fluid dynamic study of fuel cell devices: simulation and experimental validation , 1994 .

[10]  N. Bessette,et al.  A Mathematical Model of a Solid Oxide Fuel Cell , 1995 .

[11]  P. Han,et al.  Mixed (oxygen ion and p-type) conductivity in yttria-stabilized zirconia containing terbia , 1995 .

[12]  Taniguchi Shunsuke,et al.  Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator , 1995 .

[13]  E. Achenbach Response of a solid oxide fuel cell to load change , 1995 .

[14]  M. Mogensen,et al.  Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition , 1995 .

[15]  M. Mogensen,et al.  Performance/structure correlation for composite SOFC cathodes , 1996 .

[16]  B. Steele Survey of materials selection for ceramic fuel cells II. Cathodes and anodes , 1996 .

[17]  A. Mcevoy,et al.  A study on the La1 − xSrxMnO3 oxygen cathode , 1996 .

[18]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[19]  Y. Solantausta,et al.  GASIFICATION GAS CLEANING WITH NICKEL MONOLITH CATALYST , 1997 .

[20]  L. D. Jonghe,et al.  Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte , 1997 .

[21]  S. D. Souza Thin-film solid oxide fuel cell with high performance at low-temperature , 1997 .

[22]  J. Goodenough,et al.  Sr‐ and Ni‐Doped LaCoO3 and LaFeO3 Perovskites New Cathode Materials for Solid‐Oxide Fuel Cells , 1998 .

[23]  H. Inaba,et al.  Nonstoichiometry of Ce0.9Gd0.1O1.95−x , 1998 .

[24]  M. Stack,et al.  Reactive element effects on the ionic transport processes in Cr2O3 scales , 1998 .

[25]  J. Rostrup-Nielsen,et al.  Carbon formation on nickel and nickel-copper alloy catalysts , 1998 .

[26]  H. Grabke Thermodynamics, mechanisms and kinetics of metal dusting , 1998 .

[27]  V. Kharton,et al.  Oxygen permeability of LaFe1−xNixO3−δ solid solutions , 1999 .

[28]  M. Wetzko,et al.  Solid oxide fuel cell stacks using extruded honeycomb type elements , 1999 .

[29]  B. Steele,et al.  Improving Gd-Doped Ceria Electrolytes for Low Temperature Solid Oxide Fuel Cells , 1999 .

[30]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[31]  Seungdoo Park,et al.  Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell: I. Methane Oxidation , 1999 .

[32]  R. G. Colclaser,et al.  Transient modeling and simulation of a tubular solid oxide fuel cell , 1999 .

[33]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[34]  Nigel P. Brandon,et al.  SOFC technology development at Rolls-Royce , 2000 .

[35]  N. Sammes,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[36]  O. Yamamoto,et al.  Aging and Raman scattering study of scandia and yttria doped zirconia , 2000 .

[37]  Whitney G Colella,et al.  Market prospects, design features, and performance of a fuel cell-powered scooter , 2000 .

[38]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[39]  M. Dokiya,et al.  Electrical and Ionic Conductivity of Gd‐Doped Ceria , 2000 .

[40]  K. Hasinska,et al.  Influence of Cobalt and Iron Additions on the Electrical and Thermal Properties of ( La , Sr ) ( Ga , Mg ) O 3 − δ , 2000 .

[41]  S. Jiang,et al.  Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics , 2000 .

[42]  O. Yamamoto Solid oxide fuel cells: fundamental aspects and prospects , 2000 .

[43]  J. Goodenough,et al.  Reduced area specific resistance for iron-based metallic interconnects by surface oxide coatings , 2001 .

[44]  P. Zhou,et al.  Innovative solid carbonate–ceria composite electrolyte fuel cells , 2001 .

[45]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[46]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[47]  S. Badwal Stability of solid oxide fuel cell components , 2001 .

[48]  E. Ivers-Tiffée,et al.  Materials and technologies for SOFC-components , 2001 .

[49]  Y. Matsuzaki,et al.  Dependence of SOFC Cathode Degradation by Chromium-Containing Alloy on Compositions of Electrodes and Electrolytes , 2001 .

[50]  K. Hassmann SOFC Power Plants, the Siemens‐Westinghouse Approach , 2001 .

[51]  A. Kovalevsky,et al.  Ceria-based materials for solid oxide fuel cells , 2001 .

[52]  T. Brylewski,et al.  Application of Fe–16Cr ferritic alloy to interconnector for a solid oxide fuel cell , 2001 .

[53]  Meilin Liu,et al.  Functionally Graded Cathodes for Honeycomb Solid Oxide Fuel Cells , 2002 .

[54]  J. Stevenson,et al.  Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate , 2002 .

[55]  L. Kershenbaum,et al.  Modelling of an indirect internal reforming solid oxide fuel cell , 2002 .

[56]  Jonghee Han,et al.  Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol–gel coating technique , 2002 .

[57]  Kerry D. Meinhardt,et al.  Optimized Lanthanum Ferrite-Based Cathodes for Anode-Supported SOFCs , 2002 .

[58]  M. J. Day,et al.  Functionally graded composite cathodes for solid oxide fuel cells , 2002 .

[59]  J. Vohs,et al.  An Examination of Lanthanide Additives on the Performance of Cu-YSZ Cermet Anodes , 2002 .

[60]  F. Tietz,et al.  Components manufacturing for solid oxide fuel cells , 2002 .

[61]  W. L. Worrell,et al.  SOFCs for Direct Oxidation of Hydrocarbon Fuels with Samaria-Doped Ceria Electrolyte , 2003 .

[62]  R. Mark Ormerod Solid oxide fuel cells , 2003 .

[63]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[64]  S. Hyun,et al.  Fabrication and characteristics of anode-supported flat-tube solid oxide fuel cell , 2003 .

[65]  Y. Xiong,et al.  Effect of water on oxygen transport properties on electrolyte surface in SOFCs. I. Surface reaction mechanism of oxygen isotope exchange on solid oxide electrolytes , 2003 .

[66]  D. Stolten,et al.  Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs , 2003 .

[67]  J. Fergus Doping and defect association in oxides for use in oxygen sensors , 2003 .

[68]  Z. Z. and,et al.  Relationship of carbon crystallization to the metal-dusting mechanism of nickel. , 2003 .

[69]  A. Virkar,et al.  Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs , 2003 .

[70]  S. Deevi,et al.  Development of interconnect materials for solid oxide fuel cells , 2003 .

[71]  K. S. Weil,et al.  Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications , 2003 .

[72]  S. Deevi,et al.  Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance , 2003 .

[73]  A. Haghiri-Gosnet,et al.  CMR manganites: physics, thin films and devices , 2003 .

[74]  M. Chyu,et al.  Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack , 2003 .

[75]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[76]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[77]  J. Steppan,et al.  Solid Electrolyte Materials, Devices, and Applications , 2004 .

[78]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[79]  Peiwen Li,et al.  Numerical Modeling and Performance Study of a Tubular SOFC , 2004 .

[80]  Susan Krumdieck,et al.  Solid oxide fuel cell architecture and system design for secure power on an unstable grid , 2004 .

[81]  E. Ivers-Tiffée,et al.  Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications , 2004 .

[82]  H. Anderson,et al.  Application of Composite Technology for SOFCs , 2004 .

[83]  R. Mukundan,et al.  Sulfur Tolerant Anodes for SOFCs , 2004 .

[84]  N. Sammes,et al.  Fabrication and properties of anode-supported tubular solid oxide fuel cells , 2004 .

[85]  Mark C. Williams,et al.  U.S. distributed generation fuel cell program , 2004 .

[86]  Anna G. Stefanopoulou,et al.  Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems , 2004 .

[87]  T. Ishihara,et al.  PO2 dependence of valence number of Co in LaGaO3 and its influence on partial electronic and oxide ionic conductivity , 2004 .

[88]  S. Campanari,et al.  Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry , 2004 .

[89]  J. Fergus Lanthanum chromite-based materials for solid oxide fuel cell interconnects , 2004 .

[90]  K. Natesan,et al.  Corrosion of metallic interconnects for SOFC in fuel gases , 2004 .

[91]  W. Sitte,et al.  Defect Chemical Modeling of (La, Sr)(Co, Fe)O3 − δ , 2004 .

[92]  I. Celik,et al.  A numerical study of cell-to-cell variations in a SOFC stack , 2004 .

[93]  S. Jiang,et al.  A review of anode materials development in solid oxide fuel cells , 2004 .

[94]  Meilin Liu,et al.  Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells , 2004 .

[95]  S. Chan,et al.  Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte , 2004 .

[96]  M. Mogensen,et al.  High-performance lanthanum-ferrite-based cathode for SOFC , 2005 .

[97]  M. Mogensen,et al.  A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air , 2005 .

[98]  Biao Huang,et al.  Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance , 2005 .

[99]  N. Sammes,et al.  Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects , 2005 .

[100]  Nigel P. Brandon,et al.  Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell. II. Model-based dynamic performance and control , 2005 .

[101]  Meilin Liu,et al.  Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs , 2005 .

[102]  Z. Yang,et al.  Mn1.5Co1.5 O 4 Spinel Protection Layers on Ferritic Stainless Steels for SOFC Interconnect Applications , 2005 .

[103]  Eric Liese,et al.  Performance Comparison of Internal Reforming Against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System , 2005 .

[104]  S. Barnett,et al.  Direct operation of solid oxide fuel cells with methane fuel , 2005 .

[105]  S. Jiang,et al.  Early interaction between Fe–Cr alloy metallic interconnect and Sr-doped LaMnO_3 cathodes of solid oxide fuel cells , 2005 .

[106]  Fabian Mueller,et al.  Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control , 2005 .

[107]  L. M. Rodriguez-Martinez,et al.  Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs , 2005 .

[108]  N. Sammes,et al.  Design and fabrication of a 100 W anode supported micro-tubular SOFC stack , 2005 .

[109]  Y. Bultel,et al.  Anode-Supported SOFC Model Centered on the Direct Internal Reforming , 2005 .

[110]  J. Fergus Metallic interconnects for solid oxide fuel cells , 2005 .

[111]  Vinod M. Janardhanan,et al.  Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells , 2005 .

[112]  Raymond J. Gorte,et al.  Recent developments towards commercialization of solid oxide fuel cells , 2005 .

[113]  C. Adjiman,et al.  Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis , 2005 .

[114]  F. Aldinger,et al.  Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity , 2006 .

[115]  Vinod M. Janardhanan,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[116]  Xin Sun,et al.  The modeling of a standalone solid-oxide fuel cell auxiliary power unit , 2006 .

[117]  S. Jiang,et al.  Deposition of Cr Species at ( La , Sr ) ( Co , Fe ) O3 Cathodes of Solid Oxide Fuel Cells , 2006 .

[118]  R. Dougal,et al.  Parameter setting and analysis of a dynamic tubular SOFC model , 2006 .

[119]  K. Schwarz Materials design of solid electrolytes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Biao Huang,et al.  Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics , 2006 .

[121]  S. Barnett,et al.  High-rate electrochemical partial oxidation of methane in solid oxide fuel cells , 2006 .

[122]  Weishen Yang,et al.  Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode IT-SOFC: I. The effect of CO2 on the cell performance , 2006 .

[123]  Meilin Liu,et al.  Identification of nickel sulfides on Ni-YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy , 2006 .

[124]  M. Mori,et al.  Effect of components in electrodes on sintering characteristics of Ce0.9Gd0.1O1.95 electrolyte in intermediate-temperature solid oxide fuel cells during fabrication , 2006 .

[125]  T. Inagaki,et al.  Effects of additives on the sintering properties of samaria-doped ceria , 2006 .

[126]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[127]  K. Murata,et al.  Ni-SDC cermet anode fabricated from NiO–SDC composite powder for intermediate temperature SOFC , 2006 .

[128]  Yuehe Lin,et al.  Kinetics of Carbon Dioxide Sorption on Perovskite-Type Metal Oxides , 2006 .

[129]  K. Sasaki,et al.  H2S Poisoning of Solid Oxide Fuel Cells , 2006 .

[130]  N. Bonanos,et al.  Assessment of doped ceria as electrolyte , 2006 .

[131]  S. Geng,et al.  Evaluation of Haynes 242 alloy as SOFC interconnect material , 2006 .

[132]  O. Yanchevskii,et al.  Structural, electrical, and magnetic properties of La0.7Sr0.3Mn1−yCryO3 , 2006 .

[133]  M. Fowler,et al.  Experimental and modeling study of solid oxide fuel cell operating with syngas fuel , 2006 .

[134]  L. Gauckler,et al.  Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC , 2006 .

[135]  Toshio Suzuki,et al.  Development of Honeycomb-type SOFCs with Accumulated Multi Micro-cells , 2007 .

[136]  R. Gemmen,et al.  The effect of coal syngas containing HCl on the performance of solid oxide fuel cells: Investigations into the effect of operational temperature and HCl concentration , 2007 .

[137]  J. Vohs,et al.  A Support Layer for Solid Oxide Fuel Cells , 2007 .

[138]  Z. Yang,et al.  A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells , 2007 .

[139]  Z. Yang,et al.  (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications , 2007 .

[140]  S. Geng,et al.  Evaluation of several low thermal expansion Fe–Co–Ni alloys as interconnect for reduced-temperature solid oxide fuel cell , 2007 .

[141]  J. Tartaj,et al.  Sinterability, microstructures and electrical properties of Ni/Gd-doped ceria cermets used as anode materials for SOFCs , 2007 .

[142]  Meilin Liu,et al.  Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy , 2007 .

[143]  Junxi Jia,et al.  A mathematical model of a tubular solid oxide fuel cell with specified combustion zone , 2007 .

[144]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[145]  Meilin Liu,et al.  Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells , 2007 .

[146]  K. Kendall,et al.  Cycling of three solid oxide fuel cell types , 2007 .

[147]  N. Cai,et al.  An approximate analytical solution of transport model in electrodes for anode‐supported solid oxide fuel cells , 2007 .

[148]  S. Campanari,et al.  Experimental analysis and modeling for a circular-planar type IT-SOFC , 2007 .

[149]  I. Kevrekidis,et al.  Reaction Dynamics in a Parallel Flow Channel PEM Fuel Cell , 2007 .

[150]  Meilin Liu,et al.  Computational study of sulfur–nickel interactions: A new S–Ni phase diagram , 2007 .

[151]  Meilin Liu,et al.  Raman Spectroscopy of Nickel Sulfide Ni3S2 , 2007 .

[152]  J. Fergus Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells , 2007 .

[153]  Xin-jian Zhu,et al.  Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell , 2007 .

[154]  Bing Sun,et al.  Ni/YSZ and Ni–CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells , 2007 .

[155]  Meilin Liu,et al.  Influence of cell voltage and current on sulfur poisoning behavior of solid oxide fuel cells , 2007 .

[156]  A. Hagen,et al.  The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells , 2009 .

[157]  M. Mogensen,et al.  Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature , 2007 .

[158]  Norman Munroe,et al.  A dynamic 1D model of a solid oxide fuel cell for real time simulation , 2007 .

[159]  Ali Volkan Akkaya,et al.  Electrochemical model for performance analysis of a tubular SOFC , 2007 .

[160]  Toshio Suzuki,et al.  Fabrication and Properties of Honeycomb-type SOFCs Accumulated with Multi Micro-cells , 2007 .

[161]  S. Barnett,et al.  Effect of cathode sheet resistance on segmented-in-series SOFC power density , 2007 .

[162]  Raghunathan Rengaswamy,et al.  Isothermal models for anode-supported tubular solid oxide fuel cells , 2007 .

[163]  Kohei Ito,et al.  Chlorine Poisoning of SOFC Ni-Cermet Anodes , 2008 .

[164]  A. Feldhoff,et al.  The sol–gel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions , 2008 .

[165]  Biao Huang,et al.  1‐D dynamic modeling of SOFC with analytical solution for reacting gas‐flow problem , 2008 .

[166]  Jiang Liu,et al.  Slip‐Cast Ce0.8Sm0.2O1.9 Cone‐Shaped SOFC , 2008 .

[167]  Meilin Liu,et al.  A Novel Composite Cathode for Low‐Temperature SOFCs Based on Oxide Proton Conductors , 2008 .

[168]  M. Cheng,et al.  Investigation of Ba1−xSrxCo0.8Fe0.2O3−δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2 , 2008 .

[169]  I. Dincer,et al.  A review on macro‐level modeling of planar solid oxide fuel cells , 2008 .

[170]  M. Backhaus-Ricoult SOFC : A playground for solid state chemistry , 2008 .

[171]  M. Cheng,et al.  A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxides with CO2 in the absence and presence of H2O and O2 , 2008 .

[172]  Toshio Suzuki,et al.  Development and Evaluation of a Cathode-Supported SOFC Having a Honeycomb Structure , 2008 .

[173]  E. Wachsman,et al.  Investigating Oxygen Surface Exchange Kinetics of La0.8Sr.20MnO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ Using an Isotopic Tracer , 2008 .

[174]  Yaohui Zhang,et al.  Fabrication and Performance of Cone‐Shaped Segmented‐In‐Series Solid Oxide Fuel Cells , 2008 .

[175]  F. Tietz,et al.  From powder properties to fuel cell performance – A holistic approach for SOFC cathode development , 2008 .

[176]  M. Muhammed,et al.  Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs , 2008 .

[177]  D. Leung,et al.  Modeling of methane fed solid oxide fuel cells: Comparison between proton conducting electrolyte and oxygen ion conducting electrolyte , 2008 .

[178]  S. Jiang,et al.  Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells , 2008 .

[179]  Jiang Liu,et al.  A novel design and performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack , 2009 .

[180]  Raghunathan Rengaswamy,et al.  Dynamic modeling and validation studies of a tubular solid oxide fuel cell , 2009 .

[181]  Suttichai Assabumrungrat,et al.  Reviews on Solid Oxide Fuel Cell Technology , 2009 .

[182]  S. Skogestad,et al.  Control of the mass and energy dynamics of polybenzimidazole-membrane fuel cells , 2009 .

[183]  Toshio Suzuki,et al.  Evaluation of extruded cathode honeycomb monolith-supported SOFC under rapid start-up operation , 2009 .

[184]  R. Hammami,et al.  Combined experimental and theoretical investigation of the CO2 adsorption on LaMnO3+y perovskite oxide , 2009 .

[185]  Y. Xiong,et al.  Effects of impurities on the degradation and long-term stability for solid oxide fuel cells , 2009 .

[186]  H. Matsumoto,et al.  Ag current collector for honeycomb solid oxide fuel cells using LaGaO3-based oxide electrolyte , 2009 .

[187]  H. Matsumoto,et al.  Honeycomb-Type Solid Oxide Fuel Cell Using La0.9Sr0.1Ga0.8Mg0.2O3 Electrolyte for High Volumetric Power Density , 2009 .

[188]  D. Jeon A comprehensive CFD model of anode-supported solid oxide fuel cells , 2009 .

[189]  C. Jin,et al.  Dip coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells , 2009 .

[190]  R. Kee,et al.  Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells , 2009 .

[191]  M. Soroush,et al.  Dynamics and Control of a Tubular Solid-Oxide Fuel Cell , 2009 .

[192]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[193]  T. Yamaguchi,et al.  Effect of Cathode Porosity on the Performances of Cathode Supported Honeycomb SOFCs , 2009 .

[194]  Toshio Suzuki,et al.  Fabrication and evaluation of a novel cathode-supported honeycomb SOFC stack , 2009 .

[195]  Jiang Liu,et al.  Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip coating technique , 2009 .

[196]  J. Zondlo,et al.  The effect of HCl in syngas on Ni-YSZ anode-supported solid oxide fuel cells , 2009 .

[197]  R. Rengaswamy,et al.  A Review of Solid Oxide Fuel Cell (SOFC) Dynamic Models , 2009 .

[198]  L. Gauckler,et al.  Influence of CO2 on Ba0.2Sr0.8Co0.8Fe0.2O3−δ at elevated temperatures , 2009 .

[199]  A. Marquis,et al.  The Current Density Distribution in a Segmented-in-Series SOFC , 2009 .

[200]  J. Goodenough,et al.  Materials for solid oxide fuel cells (SOFCs) , 2009 .

[201]  Toshio Suzuki,et al.  Design and Fabrication of a Novel Electrode‐Supported Honeycomb SOFC , 2009 .

[202]  Y. Liu,et al.  Stability of Haynes 242 as metallic interconnects of solid oxide fuel cells (SOFCs) , 2010 .

[203]  A. Hagen,et al.  Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells , 2010 .

[204]  C. Jin,et al.  Direct operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell stack with methane , 2010 .

[205]  D. Cui,et al.  Design for segmented-in-series solid oxide fuel cell through mathematical modeling , 2010 .

[206]  Xingbo Liu,et al.  Recent Development of SOFC Metallic Interconnect , 2010 .

[207]  Zhixiang Liu,et al.  Preparation and characterization of nanocrystalline Ce0.8Sm0.2O1.9 for low temperature solid oxide fuel cells based on composite electrolyte , 2010 .

[208]  B. Zhu,et al.  Study on nanocomposites based on carbonate@ceria. , 2010, Journal of nanoscience and nanotechnology.

[209]  Zongping Shao,et al.  Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3−δ as a cathode of solid oxide fuel cells operating below 600 °C , 2010 .

[210]  A. Hagen,et al.  Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs , 2009, ECS Transactions.

[211]  M. Soroush,et al.  Mathematical modeling of solid oxide fuel cells: A review , 2011 .

[212]  Michele Pavone,et al.  Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials , 2011 .

[213]  Chusheng Chen,et al.  Ta-doped SrCo0.8Fe0.2O3-δ membranes: Phase stability and oxygen permeation in CO2 atmosphere , 2011 .

[214]  E. Wachsman,et al.  Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes , 2011 .

[215]  M. Koyama,et al.  Chemical durability of Solid Oxide Fuel Cells: Influence of impurities on long-term performance , 2011 .

[216]  M. Muhammed,et al.  Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature s , 2011 .

[217]  T. Chen,et al.  Chlorine contaminants poisoning of solid oxide fuel cells , 2011 .

[218]  J. Park,et al.  Novel SrCo1 − 2x(Fe,Nb)xO3 − δ (x = 0.05, 0.10) oxides targeting CO2 capture and O2 enrichment: Structural stability and oxygen sorption properties , 2011 .

[219]  W. Sitte,et al.  Long-term stability of the oxygen exchange properties of (La,Sr)1 − z(Co,Fe)O3 − δ in dry and wet atmospheres , 2011 .

[220]  Chuanming Li,et al.  Preparation and characterization of Ce0.8Sm0.2O1.9(SDC)–carbonates composite electrolyte via molten salt infiltration , 2011 .

[221]  J. Ding,et al.  Direct operation of cone-shaped LT-SOFCs with methane fuel for portable application , 2011 .

[222]  Minfang Han,et al.  A-site deficient Ba1−xCo0.7Fe0.2Ni0.1O3−δ cathode for intermediate temperature SOFC , 2011 .

[223]  W. Sitte,et al.  Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600 °C in dry and humid atmospheres , 2011 .

[224]  Z. Wuillemin,et al.  Glass-Forming Exogenous Silicon Contamination in Solid Oxide Fuel Cell Cathodes , 2011 .

[225]  R. B. Lima,et al.  Advanced Multi‐Fuelled Solid Oxide Fuel Cells (ASOFCs) Using Functional Nanocomposites for Polygeneration , 2011 .

[226]  J. Liu,et al.  Preliminary Study on Direct Operation of LT‐SOFCs Based on GDC Electrolyte Film With DME Fuel , 2011 .

[227]  Bo-Kuai Lai,et al.  Scalable nanostructured membranes for solid-oxide fuel cells. , 2011, Nature nanotechnology.

[228]  R. Kee,et al.  Two-dimensional model of distributed charge transfer and internal reforming within unit cells of segmented-in-series solid-oxide fuel cells , 2011 .

[229]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[230]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[231]  Jiang Liu,et al.  Effect of anode structure on performance of cone-shaped solid oxide fuel cells fabricated by phase inversion , 2012 .

[232]  W. Sitte,et al.  Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La0.6Sr0.4CoO3 − δ , 2012 .

[233]  K. Yamaji,et al.  Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration , 2012 .

[234]  Jong‐Won Lee,et al.  La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells , 2012 .

[235]  K. Efimov,et al.  Ca-containing CO2-tolerant perovskite materials for oxygen separation , 2012 .

[236]  Waldemar Bujalski,et al.  Cycling durability studies of IP-SOFC , 2012 .

[237]  Jooho Moon,et al.  Influence of reduced substrate shunting current on cell performance in integrated planar solid oxide fuel cells , 2012 .

[238]  Zongping Shao,et al.  Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3−δ as a cathode for proton-conducting solid oxide fuel cells , 2012 .

[239]  Yubao Tang,et al.  Electrochemical performance of cone-shaped anode-supported segmented-in-series SOFCs fabricated by gel-casting technique , 2012 .

[240]  P. J. Howard,et al.  Corrosion Resistance of SOFC and SOEC Glass-Ceramic Seal Materials in High Temperature Steam/Hydrogen , 2012 .

[241]  Jong‐Won Lee,et al.  A flat-tubular solid oxide fuel cell with a dense interconnect film coated on the porous anode support , 2012 .

[242]  Meilin Liu,et al.  Solid Oxide Fuel Cells , 2012 .

[243]  W. Guan,et al.  Investigation of Impactors on Cell Degradation Inside Planar SOFC Stacks , 2012 .

[244]  Wen-Cheng J. Wei,et al.  LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells , 2012 .

[245]  Jiang Liu,et al.  Cone-shaped cylindrical Ce0.9Gd0.1O1.95 electrolyte prepared by slip casting and its application to solid oxide fuel cells , 2012 .

[246]  Hailei Zhao,et al.  Electrical conductivity and cell performance of La0.3Sr0.7Ti1−xCrxO3−δ perovskite oxides used as anode and interconnect material for SOFCs , 2013 .

[247]  B. Zhu,et al.  Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells , 2013 .

[248]  Jong‐Won Lee,et al.  A tubular segmented-in-series solid oxide fuel cell with metallic interconnect films: A performance study through mathematical simulations , 2013 .

[249]  Sun-Ju Song,et al.  Effect of humidification on the performance of intermediate-temperature proton conducting ceramic fuel cells with ceramic composite cathodes , 2013 .

[250]  Chuanming Li,et al.  Investigation of Sm0.2Ce0.8O1.9/Na2CO3 nanocomposite electrolytes: preparation, interfacial microstructures, and ionic conductivities. , 2013, ACS applied materials & interfaces.

[251]  J. Sarkar,et al.  Operating characteristics of transcritical CO2 heat pump for simultaneous water cooling and heating , 2013 .

[252]  A. Feldhoff,et al.  Effect of CO2 and SO2 on oxygen permeation and microstructure of (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ membranes , 2013 .

[253]  Jingli Luo,et al.  Cobalt doped LaSrTiO3-δ as an anode catalyst: Effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen , 2013 .

[254]  K. C. Anjaneya,et al.  Preparation and characterization of Ce1−xSmxO2−δ (x = 0.1–0.3) as electrolyte material for intermediate temperature SOFC , 2013 .

[255]  F. Prado,et al.  Oxygen order–disorder phase transition in layered GdBaCo2O5+δ perovskite: Thermodynamic and transport properties , 2013 .

[256]  Xiaomin Zhang,et al.  High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode operating under CO2/H2O-containing atmosphere , 2013 .

[257]  M. Rieu,et al.  An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs , 2013 .

[258]  H. Chandra,et al.  Application of solid oxide fuel cell technology for power generation—A review , 2013 .

[259]  Xiaomin Zhang,et al.  A comparison on effects of CO2 on La0.8Sr0.2MnO3+δ and La0.6Sr0.4CoO3−δ cathodes , 2013 .

[260]  K. Ludwig,et al.  Effect of atmospheric CO 2 on surface segregation and phase formation in La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ thin films , 2014 .

[261]  W. Wang,et al.  Quantitative contribution of resistance sources of components to stack performance for planar solid oxide fuel cells , 2014 .

[262]  Shouguo Huang,et al.  Bismuth‐Based Pervoskite as a High‐Performance Cathode for Intermediate‐Temperature Solid‐Oxide Fuel Cells , 2014 .

[263]  Qizhao Lin,et al.  Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2−δ–Li0.3Ni0.6Cu0.07Sr0.03O2−δ layer , 2014 .

[264]  Heng Zhang,et al.  Effect of CO2 on the stability of strontium doped lanthanum manganite cathode , 2014 .

[265]  Xuening Jiang,et al.  Effects of Pr 3+ -deficiency on structure and properties of PrBaCo 2 O 5+δ cathode material-A comparison with Ba 2+ -deficiency case , 2014 .

[266]  R. I. Smith Investigation into the effect of Si doping on the cell symmetry and performance of Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ} SOFC cathode materials , 2014 .

[267]  Yongdan Li,et al.  Single layer fuel cell based on a composite of Ce0.8Sm0.2O2−δ–Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6−δ , 2014 .

[268]  S. Jiang,et al.  Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review , 2014 .

[269]  P. Lund,et al.  Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC) , 2014 .

[270]  Zijing Lin,et al.  Theoretical model for surface diffusion driven Ni-particle agglomeration in anode of solid oxide fuel cell , 2014 .

[271]  Chusheng Chen,et al.  Oxygen-selective membranes integrated with oxy-fuel combustion , 2014 .

[272]  C. Teichert,et al.  Long-term stability of the IT-SOFC cathode materials La0.6Sr0.4CoO3 − δ and La2NiO4 + δ against combined chromium and silicon poisoning , 2015 .

[273]  Zongping Shao,et al.  Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9−xFexO3−δ cathodes for solid oxide fuel cells , 2015 .

[274]  A. Muchtar,et al.  A review on the selection of anode materials for solid-oxide fuel cells , 2015 .

[275]  S. Cha,et al.  Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte , 2015, Beilstein journal of nanotechnology.

[276]  G. Ma,et al.  A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+δ cathode material for proton-conducting IT-SOFC , 2015 .

[277]  H. Hwang,et al.  Effect of cell-to-cell distance in segmented-in-series solid oxide fuel cells , 2015 .

[278]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[279]  Zongping Shao,et al.  Cobalt-free SrNbxFe1−xO3−δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells , 2015 .

[280]  C. Zhang,et al.  Thermal and electrochemical properties of layered perovskite PrBaCo2−xMnxO5+δ (x = 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells , 2015 .

[281]  S. Jensen,et al.  Eliminating degradation in solid oxide electrochemical cells by reversible operation. , 2015, Nature Materials.

[282]  Zongping Shao,et al.  Tin and iron co-doping strategy for developing active and stable oxygen reduction catalysts from SrCoO3−δ for operating below 800 °C , 2015 .

[283]  H. Hwang,et al.  Effect of cell length on the performance of segmented-in-series solid oxide fuel cells fabricated using decalcomania method , 2015 .

[284]  T. Ishihara,et al.  Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions , 2016 .

[285]  S. Jiang,et al.  Mechanism and Kinetics of SO2 Poisoning on the Electrochemical Activity of La0.8Sr0.2MnO3 Cathodes of Solid Oxide Fuel Cells , 2016 .

[286]  T. He,et al.  A-site calcium-doped Pr1−xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells , 2016 .

[287]  T. He,et al.  SrCo1−xMoxO3−δ perovskites as cathode materials for LaGaO3-based intermediate-temperature solid oxide fuel cells , 2016 .

[288]  Bin Zhu,et al.  Progress in Electrolyte-Free Fuel Cells , 2016, Front. Energy Res..

[289]  A. Muchtar,et al.  Thermal Decomposition of Cobalt-free SrFe0.9Ti0.1O3-δ Cathode for Intermediate Temperature Solid Oxide Fuel Cell , 2016 .

[290]  Juan Li,et al.  High thermal stability of three-dimensionally ordered nano-composite cathodes for solid oxide fuel cells , 2016 .

[291]  M. Saleemi,et al.  Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ - Sm 0.2 Ce 0.8 O 1.9 ) and Schottky barrier , 2016 .

[292]  I. Shakir,et al.  High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC , 2016 .

[293]  Mansoo Park,et al.  Acceleration tests: Degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures , 2017 .

[294]  S. Jiang,et al.  Effect of SO2 Poisoning on the Electrochemical Activity of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells , 2017 .

[295]  Fellipe Sartori da Silva,et al.  Novel materials for solid oxide fuel cell technologies: A literature review , 2017 .

[296]  L. Jian,et al.  The investigation of Cr deposition and poisoning effect on Sr-doped lanthanum manganite cathode induced by cathodic polarization for intermediate temperature solid oxide fuel cell , 2017 .

[297]  High conductive (LiNaK)2CO3Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications , 2017 .

[298]  K. Fung,et al.  Effect of Microstructure on Ionic Conduction of Composite Electrolytes Consisting of Doped Ceria and Carbonates , 2017 .

[299]  B. Zhu,et al.  Electrochemical properties of LaCePr-oxide/K2WO4 composite electrolyte for low-temperature SOFCs , 2017 .

[300]  B. Zhu,et al.  Industrial grade rare-earth triple-doped ceria applied for advanced low-temperature electrolyte layer-free fuel cells , 2017 .

[301]  Lijun Wang,et al.  Electrochemical performance and carbon deposition of anode-supported solid oxide fuel cell exposed to H-2-CO fuels , 2017 .

[302]  Wonbeak Lee,et al.  Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells , 2017 .

[303]  B. Zhu,et al.  Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells , 2017, Materials.

[304]  A. Muchtar,et al.  Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques , 2017 .

[305]  Srikanth Gopalan,et al.  Roles of humidity and cathodic current in chromium poisoning of Sr-doped LaMnO 3 -based cathodes in solid oxide fuel cells , 2017 .

[306]  L. Jian,et al.  Promoted Cr-poisoning tolerance of La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode for intermediate temperature solid oxide fuel cells , 2017 .

[307]  L. Fan,et al.  Rare-earth oxide–Li0.3Ni0.9Cu0.07Sr0.03O2-δ composites for advanced fuel cells , 2017 .

[308]  M. Gazda,et al.  Performance of a single layer fuel cell based on a mixed proton-electron conducting composite , 2017 .

[309]  Pierluigi Siano,et al.  Recent advances and challenges of fuel cell based power system architectures and control – A review , 2017 .

[310]  P. Tiwari,et al.  Analysis of gadolinium-doped ceria-ternary carbonate composite electrolytes for solid oxide fuel cells , 2017, Ionics.

[311]  H. Näfe Cause of “Multi-Ionic Conduction” and “Ionic Conductivity Enhancement” in Carbonate-Based Composite Electrolytes , 2017 .

[312]  Minfang Han,et al.  A short review of cathode poisoning and corrosion in solid oxide fuel cell , 2017 .

[313]  K. S. Dhathathreyan,et al.  Nanomaterials for Fuel Cell Technology , 2017 .

[314]  Yongliang Zhang,et al.  Infiltration of La0·6Sr0·4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell , 2017 .

[315]  T. Namioka,et al.  The effect of ceria content in nickel–ceria composite anode catalysts on the discharge performance for solid oxide fuel cells , 2017 .

[316]  B. Zhu,et al.  Low-temperature fuel cells using a composite of redox-stable perovskite oxide La0.7Sr0.3Cr0.5Fe0.5O3-δ and ionic conductor , 2017 .

[317]  Chuanxin He,et al.  Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: A review , 2017 .

[318]  Yingru Zhao,et al.  An efficient method exploiting the waste heat from a direct carbon fuel cell by means of a thermophotovoltaic cell , 2017 .

[319]  J. Irvine,et al.  Novel layered perovskite SmBaMn2O5+δ for SOFCs anode material , 2017 .

[320]  N. Sammes,et al.  Monolithic flat tubular types of solid oxide fuel cells with integrated electrode and gas channels , 2017 .

[321]  T. Kushi Effects of sulfur poisoning on degradation phenomena in oxygen electrodes of solid oxide electrolysis cells and solid oxide fuel cells , 2017 .

[322]  Yongjun Lu,et al.  Modeling cooperative creep reoxidation effect on the mechanical stability of anode‐supported solid oxide fuel cell , 2018, International Journal of Energy Research.

[323]  M. Andersson,et al.  Modeling of solid oxide fuel cells with optimized interconnect designs , 2018, International Journal of Heat and Mass Transfer.

[324]  Sanghyeok Lee,et al.  Three-dimensional dynamic modeling and transport analysis of solid oxide fuel cells under electrical load change , 2018, Energy Conversion and Management.

[325]  A. Hagen,et al.  Classical statistical methodology for accelerated testing of Solid Oxide Fuel Cells , 2018, Journal of Power Sources.

[326]  Yu-Chuan Wu,et al.  Fabrication and characterization of Ca2+, Sr2+, Ba2+, Sm3+, and La3+ co-doped ceria-based electrolyte powders for low-temperature anode-supported solid oxide fuel cells , 2018, International Journal of Hydrogen Energy.

[327]  Marco Sorrentino,et al.  A versatile computational tool for model-based design, control and diagnosis of a generic Solid Oxide Fuel Cell Integrated Stack Module , 2018, Energy Conversion and Management.

[328]  Xiong Zhang,et al.  Investigation of layered perovskite NdBa0.5Sr0.25Ca0.25Co2O5+ as cathode for solid oxide fuel cells , 2018, Ceramics International.

[329]  L. Jian,et al.  Effects of co-doped barium cerate additive on morphology, conductivity and electrochemical properties of samarium doped ceria electrolyte for intermediate temperature solid oxide fuel cells , 2018, International Journal of Hydrogen Energy.

[330]  Jong‐Won Lee,et al.  A simplified approach to predict performance degradation of a solid oxide fuel cell anode , 2018, Journal of Power Sources.

[331]  Lucun Guo,et al.  Modifying the electrode-electrolyte interface of anode supported solid oxide fuel cells (SOFCs) by laser-machining , 2018, Energy Conversion and Management.

[332]  Jakub Kupecki,et al.  Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model , 2017, Applied Energy.

[333]  B. Sundén,et al.  A three dimensional multiphysics model of a solid oxide electrochemical cell: A tool for understanding degradation , 2018, International Journal of Hydrogen Energy.

[334]  Bin Chen,et al.  Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design , 2018, Applied Energy.

[335]  Milad Ebadi Chelmehsara,et al.  Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs , 2018, International Journal of Hydrogen Energy.

[336]  Nandini Jaiswal,et al.  Structural analysis of Ce0.83Dy0.14Ca0.03O1.90 (CDC) and enhanced electrical conductivity of its composites with alkali carbonates for LT-SOFCs , 2018 .

[337]  Wei Zhang,et al.  Single-phase electronic-ionic conducting Sm3+/Pr3+/Nd3+ triple-doped ceria for new generation fuel cell technology , 2018, International Journal of Hydrogen Energy.

[338]  Meilin Liu,et al.  An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes , 2018 .

[339]  P. Su,et al.  Nanomaterials and technologies for low temperature solid oxide fuel cells : Recent advances, challenges and opportunities , 2018 .

[340]  Jun-Y. Park,et al.  Degradation behavior of Ni-YSZ anode-supported solid oxide fuel cell (SOFC) as a function of H2S concentration , 2018, International Journal of Hydrogen Energy.

[341]  B. Ghorbani,et al.  3D and simplified pseudo-2D modeling of single cell of a high temperature solid oxide fuel cell to be used for online control strategies , 2018 .

[342]  M. A. Khan,et al.  Synthesize and characterization of ceria based nano-composite materials for low temperature solid oxide fuel cell , 2018 .

[343]  J. Ouyang,et al.  Preparation and characterization of GdSmZr2O7–(Li0.52Na0.48)2CO3 composite electrolyte for intermediate temperature solid oxide fuel cells , 2018, Electrochimica Acta.

[344]  Bin Chen,et al.  Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell , 2018, Energy Conversion and Management.

[345]  Tak-Hyoung Lim,et al.  Improving sulfur tolerance of Ni-YSZ anodes of solid oxide fuel cells by optimization of microstructure and operating conditions , 2018, International Journal of Hydrogen Energy.

[346]  S. Cha,et al.  Thin Film Solid Oxide Fuel Cells Operating Below 600°C: A Review , 2018, International Journal of Precision Engineering and Manufacturing-Green Technology.

[347]  Cheng Bao,et al.  Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system , 2018 .

[348]  S. Jiang,et al.  Sulphur poisoning of solid oxide electrolysis cell anodes , 2018 .

[349]  Xiongwen Zhang,et al.  Investigation of carbon formation on Ni/YSZ anode of solid oxide fuel cell from CO disproportionation reaction , 2018 .

[350]  Christoph Hochenauer,et al.  Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches , 2018, Applied Energy.

[351]  R. Poyato,et al.  Mechanosynthesis of Sr1-xLaxTiO3 anodes for SOFCs: Structure and electrical conductivity , 2018, Journal of Alloys and Compounds.

[352]  H Zhao,et al.  Evaluation of La2-xNiMnO6-δ as cathode for intermediate temperature solid oxide fuel cells , 2018, Journal of Power Sources.

[353]  Fei Gao,et al.  Numerical stiffness study of multi-physical solid oxide fuel cell model for real-time simulation applications , 2018, Applied Energy.

[354]  K. Kohse-Höinghaus Clean combustion: Chemistry and diagnostics for a systems approach in transportation and energy conversion , 2018 .

[355]  H. Yoon,et al.  Morphologically well-defined Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber with an enhanced triple phase boundary as cathode for low-temperature solid oxide fuel cells , 2018 .

[356]  A. Solovyev,et al.  Fabrication and Performance Investigation of Three-Cell SOFC Stack Based on Anode-Supported Cells With Magnetron Sputtered Electrolyte , 2018 .

[357]  H. Yoon,et al.  Facile fabrication strategy of highly dense gadolinium-doped ceria/yttria-stabilized zirconia bilayer electrolyte via cold isostatic pressing for low temperature solid oxide fuel cells , 2019, Journal of Power Sources.

[358]  Soonwook Hong,et al.  Co-sputtered nanocomposite nickel cermet anode for high-performance low-temperature solid oxide fuel cells , 2019, Journal of Power Sources.

[359]  Wei Zhang,et al.  Novel high ionic conductivity electrolyte membrane based on semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ for low-temperature solid oxide fuel cells , 2019, Journal of Power Sources.

[360]  Bin Yang,et al.  Effects of slurry composition on the electrolyte support structure and performance of electrolyte-supported planar solid oxide fuel cells , 2019, Ceramics International.

[361]  Defeng Zhou,et al.  Bismuth tungstate/neodymium-doped ceria composite electrolyte for intermediate-temperature solid oxide fuel cell: Sintering aid and composite effect , 2019, Journal of Power Sources.

[362]  J. Otomo,et al.  Fabrication and electrochemical performance of anode-supported solid oxide fuel cells based on proton-conducting lanthanum tungstate thin electrolyte , 2019, Solid State Ionics.

[363]  L. Hao,et al.  3D printed Sm-doped ceria composite electrolyte membrane for low temperature solid oxide fuel cells , 2019, International Journal of Hydrogen Energy.

[364]  F. Chen,et al.  A Promising Composite Anode for Solid Oxide Fuel Cells: Sr2FeMo0.65Ni0.35O6-δ-Gd0.1Ce0.9O2-δ , 2019, Journal of The Electrochemical Society.

[365]  Minfang Han,et al.  Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing , 2019, Journal of Materials Science & Technology.

[366]  Gang Chen,et al.  Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells , 2019, Nature Communications.

[367]  M. Anwar,et al.  Synthesis and characterization of M-doped ceria-ternary carbonate composite electrolytes (M = erbium, lanthanum and strontium) for low-temperature solid oxide fuel cells , 2019, Journal of Alloys and Compounds.