Incompressible Boundary Layer Instability and Transition

The present thesis is an attempt to use classical hydrodynamic stability theory based on a Fourier decomposition of a perturbation around a steady flow solution denoted as the baseflow, and investigate its implications for laminar-turbulent transition modelling. We aim at further bridging the gap that has existed in fluid dynamics for many decades between stability theory and the development of Navier-Stokes solvers. A gap which has been narrowed during the last decade due to advances in nonlinear stability analysis on one side and direct numerical solutions on the other. In particular the nonlinear Parabolized Stability Equations (PSE) will be applied to capture secondary instability waves, the last distinct feature of many unsteady boundary layer flows prior to transition to turbulence. The historical singularity of parabolic boundary layer solvers that is encountered at a boundary separation point, will affect the PSE in a likewise manner leading to failure of the solution procedure. We try to remedy this shortcoming and shed light into the mechanism that governs the transition in a boundary layer recirculation bubble, introducing for that purpose the Elliptic Stability Equations (ESE). As a prerequisite to the work outlined above powerful discretization tools must be available. For this purpose a suite of novel 6’th order accurate coupled compact finite difference and finite volume based solvers have been developed in one and two dimensions.

[1]  Jens Nørkær Sørensen,et al.  Analysis of Planar Measurements of Turbulent Flows , 2003 .

[2]  Jens Nørkær Sørensen,et al.  Unsteady Aerodynamic Forces on NACA 0015 Airfoil in Harmonic Translatory Motion , 2002 .

[3]  D. Henningson,et al.  Transition of streamwise streaks in zero-pressure-gradient boundary layers , 2002, Journal of Fluid Mechanics.

[4]  Nicholas Pedersen,et al.  Experimental Investigation of Flow Structures in a Centrifugal Pump Impeller using Particle Image Velocimetry , 2001 .

[5]  Marcelo H. Kobayashi,et al.  A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions , 2001 .

[6]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[7]  Jens Nørkær Sørensen,et al.  Low-dimensional modeling and dynamics of the flow in a lid driven cavity with a rotating rod , 2000 .

[8]  P. Spalart Strategies for turbulence modelling and simulations , 2000 .

[9]  Neil D. Sandham,et al.  Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment , 2000, Journal of Fluid Mechanics.

[10]  Philippe R. Spalart,et al.  Mechanisms of transition and heat transfer in a separation bubble , 2000, Journal of Fluid Mechanics.

[11]  P. S. Larsen,et al.  Imaging techniques for planar velocity and concentration measurements , 1999 .

[12]  Jan Vierendeels,et al.  A multigrid semi-implicit line-method for viscous incompressible and low-mach-number flows on high aspect ratio grids , 1999 .

[13]  H. Madsen,et al.  Unsteady Airfoil Flows with Application to Aeroelastic Stability , 1999 .

[14]  R. Joslin,et al.  Large-eddy simulation of boundary-layer transition on a swept wedge , 1999, Journal of Fluid Mechanics.

[15]  P. Chu,et al.  A Three-Point Sixth-Order Nonuniform Combined Compact Difference Scheme , 1999 .

[16]  D. Henningson,et al.  On a Stabilization Procedure for the Parabolic Stability Equations , 1998 .

[17]  L. Redekopp,et al.  Local and global instability properties of separation bubbles , 1998 .

[18]  P. Chu,et al.  A Three-Point Combined Compact Difference Scheme , 1998 .

[19]  N. Messersmith,et al.  Application of Parabolized Stability Equations to the Prediction of Jet Instabilities , 1998 .

[20]  Markus J. Kloker,et al.  A Robust High-Resolution Split-Type Compact FD Scheme for Spatial Direct Numerical Simulation of Boundary-Layer Transition , 1997 .

[21]  Krishnan Mahesh,et al.  High order finite difference schemes with good spectral resolution , 1997 .

[22]  J. Sørensen,et al.  Vorticity-streamfunction formulation of the Navier-Stokes equations for predicting unsteady flow past bodies in arbitrary movement , 1997 .

[23]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[24]  Jens Schmidt,et al.  Experimental and numerical investigation of separated flows , 1997 .

[25]  Thorwald Herbert,et al.  Evaluation of transition in flight tests using nonlinear parabolized stability equation analysis , 1996 .

[26]  Erik Jensen Optimization of the Electromagnetic Flowmeter , 1996 .

[27]  T. Allen,et al.  Absolute and convective instabilities in separation bubbles , 1995, The Aeronautical Journal (1968).

[28]  M. Nishioka,et al.  Boundary-layer transition triggered by hairpin eddies at subcritical Reynolds numbers , 1995, Journal of Fluid Mechanics.

[29]  J. Sørensen,et al.  Discrete Vortex Method for Two-dimensional Flow past Bodies of Arbitrary Shape Undergoing Prescribed Rotary and Translational Motion , 1994 .

[30]  A. H. Haidari,et al.  The generation and regeneration of single hairpin vortices , 1994, Journal of Fluid Mechanics.

[31]  Chau-Lyan Chang,et al.  Oblique-mode breakdown and secondary instability in supersonic boundary layers , 1994, Journal of Fluid Mechanics.

[32]  Mujeeb R. Malik,et al.  Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability , 1994, Journal of Fluid Mechanics.

[33]  T. Herbert PARABOLIZED STABILITY EQUATIONS , 1994 .

[34]  D. Arnal Boundary layer transition: Predictions based on linear theory , 1994 .

[35]  M. Gaster,et al.  The non-linear evolution of modulated waves in a boundary layer , 1994 .

[36]  S. C. Reddy,et al.  Energy growth in viscous channel flows , 1993, Journal of Fluid Mechanics.

[37]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[38]  P. Spalart,et al.  Linear and nonlinear stability of the Blasius boundary layer , 1992, Journal of Fluid Mechanics.

[39]  M. Y. Hussaini,et al.  Compressible stability of growing boundary layers using parabolized stability equations , 1991 .

[40]  Thomas C. Corke,et al.  Resonant growth of three-dimensional modes in trnsitioning Blasius boundary layers , 1989, Journal of Fluid Mechanics.

[41]  T. Shih,et al.  Effects of grid staggering on numerical schemes , 1989 .

[42]  H. Bippes,et al.  Instability and transition of a three‐dimensional boundary layer on a swept flat plate , 1988 .

[43]  P. Durbin,et al.  Nonlinear critical layers eliminate the upper branch of spatially growing Tollmien-Schlichting waves , 1986 .

[44]  L. Mack Boundary-Layer Linear Stability Theory , 1984 .

[45]  Frank T. Smith,et al.  Nonlinear stability of boundary layers for disturbances of various sizes , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  L. Mack,et al.  A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer , 1976, Journal of Fluid Mechanics.

[47]  M. Nishioka,et al.  An experimental investigation of the stability of plane Poiseuille flow , 1975, Journal of Fluid Mechanics.

[48]  Ali H. Nayfeh,et al.  Nonparallel stability of boundary‐layer flows , 1975 .

[49]  N. Itoh Spatial growth of finite wave disturbances in parallel and nearly parallel flows. I - The theoretical analysis and the numerical results for plane Poiseuille flow. II - The numerical results for the flat plate boundary layer , 1974 .

[50]  S. Orszag Accurate solution of the Orr–Sommerfeld stability equation , 1971, Journal of Fluid Mechanics.

[51]  A. Craik,et al.  Non-linear resonant instability in boundary layers , 1971, Journal of Fluid Mechanics.

[52]  G. B. Schubauer,et al.  Laminar Boundary-Layer Oscillations and Stability of Laminar Flow , 1947 .

[53]  H. Liepmann,et al.  Investigations on laminar boundary-layer stability and transition on curved boundaries , 1943 .

[54]  K. Meyer,et al.  Investigation of Turbulence and Flow STructures in Electrostatic Precipitator , 2004 .

[55]  Sysi-Aho Marko,et al.  The Finite Difference Method in Partial Differential Equations , 2001 .

[56]  T. Herbert Stability and Transition of 3D Boundary Layers , 2000 .

[57]  A. Stolte Investigation of Transition Scenarios in Boundary-Layer Flows , 1999 .

[58]  M. J. Day,et al.  Structure and stability of compressible reacting mixing layers , 1999 .

[59]  S. Berlin Oblique waves in boundary layer transition , 1998 .

[60]  K. Riemslagh,et al.  A multigrid semi-implicit line-method for viscous incompressible and low Mach number compressible flows , 1998 .

[61]  F. Bertolotti On The Birth and Evolution of Disturbances in Three-Dimensional Boundary Layers , 1996 .

[62]  J. Sørensen,et al.  Interaction of Potential Flow with the Navier-STokes Equations for Rotor Aerodynamics , 1996 .

[63]  Jens Nørkær Sørensen,et al.  Vorticity-Velocity Formulation of the Navier-Stokes Equation for Aerodynamic Flows , 1995 .

[64]  Niels N. Sørensen,et al.  General purpose flow solver applied to flow over hills , 1995 .

[65]  Mengjie Wang Stability analysis of three-dimensional boundary layers with parabolized stability equations / , 1994 .

[66]  B. G. B. Klingmann,et al.  Experiments on the stability of Tollmien-Schlichting waves , 1993 .

[67]  E. A. Christensen Laminar-Turbulent Transition in the Rotating Driven Cavity Problem , 1993 .

[68]  M. Wagner Numerische Untersuchungen zum laminar-turbulenten Übergang in zwei- und dreidimensionalen Grenzschichten , 1992 .

[69]  M. Simen Local and Non-Local Stability Theory of Spatially Varying Flows. , 1992 .

[70]  Michael Gaster,et al.  Stability of Velocity Profiles with Reverse Flow , 1992 .

[71]  William S. Saric,et al.  A high-frequency, secondary instability of crossflow vortices that leads to transition , 1991 .

[72]  F. Bertolotti Linear and nonlinear stability of boundary layers with streamwise varying properties , 1991 .

[73]  B. Müller Experimentelle Untersuchung der Querströmungsinstabilität im linearen und nichtlinearen Bereich des Transitionsgebietes , 1990 .

[74]  A. Michalke,et al.  On the inviscid instability of wall-bounded velocity profiles close to separation , 1990 .

[75]  D. Arnal,et al.  Laminar-turbulent transition , 1990 .

[76]  T. Herbert Secondary Instability of Boundary Layers , 1988 .

[77]  Mark V. Morkovin,et al.  Dialogue on Bridging Some Gaps in Stability and Transition Research , 1980 .

[78]  Victor V. Kozlov,et al.  Nonlinear development of a wave in a boundary layer , 1977 .

[79]  L. Prandtl,et al.  Über die Entstehung der Turbulenz , 1931 .