Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations
暂无分享,去创建一个
[1] Tian Jiang,et al. Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations , 2013, J. Comput. Phys..
[2] J. Elgin. The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .
[3] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[4] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[5] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[6] N. Higham. The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..
[7] Barry Koren,et al. The sparse-grid combination technique applied to time-dependent advection problems ? ? The current r , 2001 .
[8] A. D. Fokker. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .
[9] Michael Griebel,et al. A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.
[10] Dong Lu,et al. Computational Complexity Study on Krylov Integration Factor WENO Method for High Spatial Dimension Convection–Diffusion Problems , 2017, Journal of Scientific Computing.
[11] Qing Nie,et al. A compact finite difference method for reaction–diffusion problems using compact integration factor methods in high spatial dimensions , 2008, Advances in Difference Equations.
[12] Barry Koren,et al. Solution of Time-dependent Advection-Diffusion Problems with the Sparse-grid Combination Technique and a Rosenbrock Solver , 2000 .
[13] Per Lötstedt,et al. Fokker–Planck approximation of the master equation in molecular biology , 2009 .
[14] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[15] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[16] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[17] Tian Jiang,et al. Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations , 2016, J. Comput. Phys..
[18] Jian Zhang,et al. Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations , 2015, J. Sci. Comput..
[19] H. Risken. Fokker-Planck Equation , 1996 .
[20] J. M. Keiser,et al. A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .
[21] Qing Nie,et al. Efficient semi-implicit schemes for stiff systems , 2006, J. Comput. Phys..
[22] Lei Zhang,et al. Array-representation integration factor method for high-dimensional systems , 2014, J. Comput. Phys..
[23] Lili Ju,et al. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations , 2014 .
[24] Yong-Tao Zhang,et al. Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods , 2011, J. Comput. Phys..
[25] Bruce A. Wade,et al. An ETD Crank‐Nicolson method for reaction‐diffusion systems , 2012 .
[26] H. Kreiss,et al. Time-Dependent Problems and Difference Methods , 1996 .
[27] Einar M. Rønquist,et al. An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .
[28] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[29] William L. Briggs,et al. A multigrid tutorial , 1987 .