Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations

Krylov implicit integration factor (IIF) methods were developed in Chen and Zhang (J Comput Phys 230:4336–4352, 2011) for solving stiff reaction–diffusion equations on high dimensional unstructured meshes. The methods were further extended to solve stiff advection–diffusion–reaction equations in Jiang and Zhang (J Comput Phys 253:368–388, 2013). Recently we studied the computational power of Krylov subspace approximations on dealing with high dimensional problems. It was shown that the Krylov integration factor methods have linear computational complexity and are especially efficient for high dimensional convection–diffusion problems with anisotropic diffusions. In this paper, we combine the Krylov integration factor methods with sparse grid combination techniques and solve high spatial dimension convection–diffusion equations such as Fokker–Planck equations on sparse grids. Numerical examples are presented to show that significant computational times are saved by applying the Krylov integration factor methods on sparse grids.

[1]  Tian Jiang,et al.  Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations , 2013, J. Comput. Phys..

[2]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[3]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[4]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[5]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[6]  N. Higham The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[7]  Barry Koren,et al.  The sparse-grid combination technique applied to time-dependent advection problems ? ? The current r , 2001 .

[8]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .

[9]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[10]  Dong Lu,et al.  Computational Complexity Study on Krylov Integration Factor WENO Method for High Spatial Dimension Convection–Diffusion Problems , 2017, Journal of Scientific Computing.

[11]  Qing Nie,et al.  A compact finite difference method for reaction–diffusion problems using compact integration factor methods in high spatial dimensions , 2008, Advances in Difference Equations.

[12]  Barry Koren,et al.  Solution of Time-dependent Advection-Diffusion Problems with the Sparse-grid Combination Technique and a Rosenbrock Solver , 2000 .

[13]  Per Lötstedt,et al.  Fokker–Planck approximation of the master equation in molecular biology , 2009 .

[14]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[15]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[16]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[17]  Tian Jiang,et al.  Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations , 2016, J. Comput. Phys..

[18]  Jian Zhang,et al.  Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations , 2015, J. Sci. Comput..

[19]  H. Risken Fokker-Planck Equation , 1996 .

[20]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[21]  Qing Nie,et al.  Efficient semi-implicit schemes for stiff systems , 2006, J. Comput. Phys..

[22]  Lei Zhang,et al.  Array-representation integration factor method for high-dimensional systems , 2014, J. Comput. Phys..

[23]  Lili Ju,et al.  Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations , 2014 .

[24]  Yong-Tao Zhang,et al.  Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods , 2011, J. Comput. Phys..

[25]  Bruce A. Wade,et al.  An ETD Crank‐Nicolson method for reaction‐diffusion systems , 2012 .

[26]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[27]  Einar M. Rønquist,et al.  An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .

[28]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[29]  William L. Briggs,et al.  A multigrid tutorial , 1987 .