Bounded time computation on metric spaces and Banach spaces
暂无分享,去创建一个
[1] Akitoshi Kawamura,et al. Computational Complexity in Analysis and Geometry , 2011 .
[2] Akitoshi Kawamura,et al. Computational benefit of smoothness: Parameterized bit-complexity of numerical operators on analytic functions and Gevrey's hierarchy , 2015, J. Complex..
[3] Kurt Mehlhorn,et al. Polynomial and abstract subrecursive classes , 1974, STOC '74.
[4] Florian Steinberg,et al. Complexity theory for spaces of integrable functions , 2016, Log. Methods Comput. Sci..
[5] Stephen A. Cook,et al. Complexity Theory for Operators in Analysis , 2012, TOCT.
[6] Shu-Ming Sun,et al. On Computability of Navier-Stokes' Equation , 2015, CiE.
[7] Bruce M. Kapron,et al. Resource-bounded continuity and sequentiality for type-two functionals , 2002, TOCL.
[8] Peter Hertling,et al. Topological properties of real number representations , 2002, Theor. Comput. Sci..
[9] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[10] Mark Braverman,et al. On the computational complexity of the Riemann mapping , 2005, math/0505617.
[11] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[12] Ulrich Kohlenbach,et al. Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals , 1996, Arch. Math. Log..
[13] Amaury Pouly,et al. Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length , 2016, J. ACM.
[14] Matthias Schröder,et al. Some Examples of Non-Metrizable Spaces Allowing a Simple Type-2 Complexity Theory , 2005, CCA.
[15] Stevo Todorcevic,et al. Notions of computability at higher types I , 2016 .
[16] Bruce M. Kapron,et al. Resource-bounded continuity and sequentiality for type-two functionals , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).
[17] Anne Sjerp Troelstra,et al. Comparing the Theory of Representations and Constructive Mathematics , 1991, CSL.
[18] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[19] Klaus Weihrauch,et al. Computable Analysis of the Abstract Cauchy Problem in a Banach Space and Its Applications (I) , 2007, Electron. Notes Theor. Comput. Sci..
[20] Klaus Weihrauch,et al. Computable analysis of the abstract Cauchy problem in a Banach space and its applications I , 2007, Math. Log. Q..
[21] E. Bishop. Foundations of Constructive Analysis , 2012 .
[22] Matthias Schröder,et al. Admissible representations for continuous computations , 2003 .
[23] Laurentiu Leustean,et al. Quantitative results on Fejer monotone sequences , 2014, 1412.5563.
[24] K. Roberts,et al. Thesis , 2002 .
[25] Martin Ziegler,et al. On the Computational Complexity of Positive Linear Functionals on C[0;1] , 2015, MACIS.
[26] Akitoshi Kawamura,et al. Small Complexity Classes for Computable Analysis , 2014, MFCS.
[27] A. Troelstra. Constructivism in mathematics , 1988 .
[28] Bruce M. Kapron,et al. A New Characterization of Type-2 Feasibility , 1996, SIAM J. Comput..
[29] Klaus Weihrauch,et al. Computability theory of generalized functions , 2003, JACM.
[30] J. Lawson,et al. Comparing Cartesian closed categories of (core) compactly generated spaces , 2004 .
[31] K. Weirauch. Computational complexity on computable metric spaces , 2003 .
[32] Victor L. Selivanov,et al. Some hierarchies of QCB 0-spaces , 2013, Mathematical Structures in Computer Science.
[33] Peter Hertling,et al. The Effective Riemann Mapping Theorem , 1999, Theor. Comput. Sci..
[34] Akitoshi Kawamura,et al. Complexity Theory of (Functions on) Compact Metric Spaces , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[35] G. Lorentz. Metric entropy and approximation , 1966 .
[36] Edward D. Kim,et al. Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .
[37] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[38] Vasco Brattka,et al. Towards computability of elliptic boundary value problems in variational formulation , 2006, J. Complex..
[39] Matthias Schröder,et al. Spaces allowing Type‐2 Complexity Theory revisited , 2004, Math. Log. Q..
[40] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[41] E. M. Hartwell. Boston , 1906 .
[42] Ulrich Kohlenbach,et al. Some computational aspects of metric fixed-point theory , 2005 .
[43] Mathieu Hoyrup,et al. Higher-order complexity in analysis , 2013 .
[44] Per Enflo,et al. A counterexample to the approximation problem in Banach spaces , 1973 .
[45] Walid Gomaa,et al. Analytical properties of resource-bounded real functionals , 2014, J. Complex..
[46] Klaus Weihrauch,et al. Computing Schrödinger propagators on Type-2 Turing machines , 2006, J. Complex..
[47] Arno Pauly,et al. Function Spaces for Second-Order Polynomial Time , 2014, CiE.
[48] Ker-I Ko,et al. Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.
[49] Klaus Weihrauch. Electronic Colloquium on Computational Complexity, Report No. 14 (2002) Computational Complexity on Computable Metric Spaces , 2022 .
[50] Volker Bosserhoff,et al. On the Effective Existence of Schauder Bases , 2009, J. Univers. Comput. Sci..
[51] Victor L. Selivanov,et al. Some Hierarchies of QCB0-Spaces , 2013, ArXiv.
[52] Vasco Brattka,et al. Computability of Banach space principles , 2001 .