Bounded time computation on metric spaces and Banach spaces

We extend Kawamura and Cook's framework for computational complexity for operators in analysis. This model is based on second-order complexity theory for functionals on the Baire space, which is lifted to metric spaces via representations. Time is measured in the length of the input encodings and the output precision.

[1]  Akitoshi Kawamura,et al.  Computational Complexity in Analysis and Geometry , 2011 .

[2]  Akitoshi Kawamura,et al.  Computational benefit of smoothness: Parameterized bit-complexity of numerical operators on analytic functions and Gevrey's hierarchy , 2015, J. Complex..

[3]  Kurt Mehlhorn,et al.  Polynomial and abstract subrecursive classes , 1974, STOC '74.

[4]  Florian Steinberg,et al.  Complexity theory for spaces of integrable functions , 2016, Log. Methods Comput. Sci..

[5]  Stephen A. Cook,et al.  Complexity Theory for Operators in Analysis , 2012, TOCT.

[6]  Shu-Ming Sun,et al.  On Computability of Navier-Stokes' Equation , 2015, CiE.

[7]  Bruce M. Kapron,et al.  Resource-bounded continuity and sequentiality for type-two functionals , 2002, TOCL.

[8]  Peter Hertling,et al.  Topological properties of real number representations , 2002, Theor. Comput. Sci..

[9]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[10]  Mark Braverman,et al.  On the computational complexity of the Riemann mapping , 2005, math/0505617.

[11]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[12]  Ulrich Kohlenbach,et al.  Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals , 1996, Arch. Math. Log..

[13]  Amaury Pouly,et al.  Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length , 2016, J. ACM.

[14]  Matthias Schröder,et al.  Some Examples of Non-Metrizable Spaces Allowing a Simple Type-2 Complexity Theory , 2005, CCA.

[15]  Stevo Todorcevic,et al.  Notions of computability at higher types I , 2016 .

[16]  Bruce M. Kapron,et al.  Resource-bounded continuity and sequentiality for type-two functionals , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[17]  Anne Sjerp Troelstra,et al.  Comparing the Theory of Representations and Constructive Mathematics , 1991, CSL.

[18]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[19]  Klaus Weihrauch,et al.  Computable Analysis of the Abstract Cauchy Problem in a Banach Space and Its Applications (I) , 2007, Electron. Notes Theor. Comput. Sci..

[20]  Klaus Weihrauch,et al.  Computable analysis of the abstract Cauchy problem in a Banach space and its applications I , 2007, Math. Log. Q..

[21]  E. Bishop Foundations of Constructive Analysis , 2012 .

[22]  Matthias Schröder,et al.  Admissible representations for continuous computations , 2003 .

[23]  Laurentiu Leustean,et al.  Quantitative results on Fejer monotone sequences , 2014, 1412.5563.

[24]  K. Roberts,et al.  Thesis , 2002 .

[25]  Martin Ziegler,et al.  On the Computational Complexity of Positive Linear Functionals on C[0;1] , 2015, MACIS.

[26]  Akitoshi Kawamura,et al.  Small Complexity Classes for Computable Analysis , 2014, MFCS.

[27]  A. Troelstra Constructivism in mathematics , 1988 .

[28]  Bruce M. Kapron,et al.  A New Characterization of Type-2 Feasibility , 1996, SIAM J. Comput..

[29]  Klaus Weihrauch,et al.  Computability theory of generalized functions , 2003, JACM.

[30]  J. Lawson,et al.  Comparing Cartesian closed categories of (core) compactly generated spaces , 2004 .

[31]  K. Weirauch Computational complexity on computable metric spaces , 2003 .

[32]  Victor L. Selivanov,et al.  Some hierarchies of QCB 0-spaces , 2013, Mathematical Structures in Computer Science.

[33]  Peter Hertling,et al.  The Effective Riemann Mapping Theorem , 1999, Theor. Comput. Sci..

[34]  Akitoshi Kawamura,et al.  Complexity Theory of (Functions on) Compact Metric Spaces , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[35]  G. Lorentz Metric entropy and approximation , 1966 .

[36]  Edward D. Kim,et al.  Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .

[37]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[38]  Vasco Brattka,et al.  Towards computability of elliptic boundary value problems in variational formulation , 2006, J. Complex..

[39]  Matthias Schröder,et al.  Spaces allowing Type‐2 Complexity Theory revisited , 2004, Math. Log. Q..

[40]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[41]  E. M. Hartwell Boston , 1906 .

[42]  Ulrich Kohlenbach,et al.  Some computational aspects of metric fixed-point theory , 2005 .

[43]  Mathieu Hoyrup,et al.  Higher-order complexity in analysis , 2013 .

[44]  Per Enflo,et al.  A counterexample to the approximation problem in Banach spaces , 1973 .

[45]  Walid Gomaa,et al.  Analytical properties of resource-bounded real functionals , 2014, J. Complex..

[46]  Klaus Weihrauch,et al.  Computing Schrödinger propagators on Type-2 Turing machines , 2006, J. Complex..

[47]  Arno Pauly,et al.  Function Spaces for Second-Order Polynomial Time , 2014, CiE.

[48]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[49]  Klaus Weihrauch Electronic Colloquium on Computational Complexity, Report No. 14 (2002) Computational Complexity on Computable Metric Spaces , 2022 .

[50]  Volker Bosserhoff,et al.  On the Effective Existence of Schauder Bases , 2009, J. Univers. Comput. Sci..

[51]  Victor L. Selivanov,et al.  Some Hierarchies of QCB0-Spaces , 2013, ArXiv.

[52]  Vasco Brattka,et al.  Computability of Banach space principles , 2001 .