The AZ algorithm for least squares systems with a known incomplete generalized inverse

We introduce an algorithm for the least squares solution of a rectangular linear system $Ax=b$, in which $A$ may be arbitrarily ill-conditioned. We assume that a complementary matrix $Z$ is known such that $A - AZ^*A$ is numerically low rank. Loosely speaking, $Z^*$ acts like a generalized inverse of $A$ up to a numerically low rank error. We give several examples of $(A,Z)$ combinations in function approximation, where we can achieve high-order approximations in a number of non-standard settings: the approximation of functions on domains with irregular shapes, weighted least squares problems with highly skewed weights, and the spectral approximation of functions with localized singularities. The algorithm is most efficient when $A$ and $Z^*$ have fast matrix-vector multiplication and when the numerical rank of $A - AZ^*A$ is small.

[1]  D. Donev Prolate Spheroidal Wave Functions , 2017 .

[2]  D. Huybrechs On the Fourier extension of non-periodic functions , 2009 .

[3]  Daan Huybrechs,et al.  Fast Algorithms for the Computation of Fourier Extensions of Arbitrary Length , 2015, SIAM J. Sci. Comput..

[4]  Sivan Toledo,et al.  The Future Fast Fourier Transform? , 1997, PPSC.

[5]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[6]  Mark Lyon,et al.  A Fast Algorithm for Fourier Continuation , 2011, SIAM J. Sci. Comput..

[7]  Daan Huybrechs,et al.  On the Fourier Extension of Nonperiodic Functions , 2010, SIAM J. Numer. Anal..

[8]  Daan Huybrechs,et al.  Frames and Numerical Approximation II: Generalized Sampling , 2018, Journal of Fourier Analysis and Applications.

[9]  Michael A. Saunders,et al.  LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..

[10]  Daan Huybrechs,et al.  Efficient function approximation on general bounded domains using wavelets on a cartesian grid , 2019, ArXiv.

[11]  J. Boyd A Comparison of Numerical Algorithms for Fourier Extension of the First, Second, and Third Kinds , 2002 .

[12]  Daan Huybrechs,et al.  Efficient function approximation on general bounded domains using splines on a cartesian grid , 2019, ArXiv.

[13]  Daan Huybrechs,et al.  Function Approximation on Arbitrary Domains Using Fourier Extension Frames , 2017, SIAM J. Numer. Anal..

[14]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[15]  Daan Huybrechs,et al.  Frames and numerical approximation , 2016, SIAM Rev..

[16]  Oscar P. Bruno,et al.  Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis , 2007, J. Comput. Phys..

[17]  O. Christensen Frames and Bases: An Introductory Course , 2008 .

[18]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..