Nearshore euxinia in the photic zone of an ancient sea

[1]  T. Peryt,et al.  Carbon and oxygen isotopic composition and foraminifers of condensed basal Zechstein (Upper Permian) strata in western Poland: environmental and stratigraphic implications , 2015 .

[2]  D. Kroon,et al.  Middle Miocene (Langhian) sapropel formation in the easternmost Mediterranean deep-water basin: Evidence from northern Cyprus , 2014 .

[3]  K. Grice,et al.  An organic record of terrestrial ecosystem collapse and recovery at the Triassic–Jurassic boundary in East Greenland , 2014 .

[4]  S. Bowring,et al.  High-precision timeline for Earth’s most severe extinction , 2014, Proceedings of the National Academy of Sciences.

[5]  R. Pancost,et al.  Upper Permian (Zechstein) microbialites: Supratidal through deep subtidal deposition, source rock, and reservoir potential , 2013 .

[6]  A. Gąsiewicz Climatic control on the Late Permian Main Dolomite (Ca2) deposition in northern margin of the Southern Permian Basin and implications to its internal cyclicity , 2013 .

[7]  H. Kiersnowski Late Permian aeolian sand seas from the Polish Upper Rotliegend Basin in the context of palaeoclimatic periodicity , 2013 .

[8]  M. Słowakiewicz,et al.  Palaeoclimatic imprint, distribution and genesis of Zechstein Main Dolomite (Upper Permian) petroleum source rocks in Poland: Sedimentological and geochemical rationales , 2013 .

[9]  Dhwani K. Desai,et al.  Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy , 2013, PloS one.

[10]  M. Szurlies Late Permian (Zechstein) magnetostratigraphy in Western and Central Europe , 2013 .

[11]  R. Wagner,et al.  Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin , 2013 .

[12]  L. Marynowski,et al.  The Werra cyclotheme (Upper Permian, Fore-Sudetic Monocline, Poland): Insights into fluctuations of the sedimentary environment from organic geochemical studies , 2013 .

[13]  Stefan Schouten,et al.  Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone. Part II: Selective preservation and degradation in sediments and consequences for the TEX86 , 2012 .

[14]  R. Pancost,et al.  Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison , 2012 .

[15]  M. Blumenberg,et al.  Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany) , 2012 .

[16]  A. Roberts,et al.  New constraints on climate forcing and variability in the circum-Mediterranean region from magnetic and geochemical observations of sapropels S1, S5 and S6 , 2012 .

[17]  T. Peryt,et al.  Geochemical and foraminiferal records of environmental changes during the Zechstein Limestone (Lopingian) deposition in Northern Poland , 2012 .

[18]  K. Grice,et al.  Biomarker and isotopic trends in a Permian–Triassic sedimentary section at Kap Stosch, Greenland , 2012 .

[19]  M. Słowakiewicz,et al.  Upper Permian Main Dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland) , 2011 .

[20]  E. Rankey,et al.  Holocene Oolitic Marine Sand Complexes of the Bahamas , 2011 .

[21]  D. Canfield,et al.  A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean Coast , 2010, Science.

[22]  L. Levin,et al.  Ocean oxygen minima expansions and their biological impacts , 2010 .

[23]  M. Asif,et al.  An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen , 2010 .

[24]  M. Tucker,et al.  High‐frequency cyclicity (Milankovitch and millennial‐scale) in slope‐apron carbonates: Zechstein (Upper Permian), North‐east England , 2009 .

[25]  J. Damsté,et al.  Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian–Turonian oceanic anoxic event using biomarker and trace metal proxies , 2009 .

[26]  J. Banfield,et al.  Unravelling ancient microbial history with community proteogenomics and lipid geochemistry , 2009, Nature Reviews Microbiology.

[27]  J. C. M. Taylor,et al.  Upper Permian—Zechstein , 2009 .

[28]  M. Słowakiewicz,et al.  SEQUENCE STRATIGRAPHY OF THE UPPER PERMIAN ZECHSTEIN MAIN DOLOMITE CARBONATES IN WESTERN POLAND: A NEW APPROACH , 2009 .

[29]  Janet Rethemeyer,et al.  Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record , 2009 .

[30]  R. Summons,et al.  Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event , 2009 .

[31]  A. Paulmier,et al.  Oxygen minimum zones (OMZs) in the modern ocean , 2009 .

[32]  A. Ridgwell,et al.  Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction , 2008 .

[33]  T. Herbert,et al.  Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~ 120 Ma) , 2008 .

[34]  J. Karstensen,et al.  The oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans , 2008 .

[35]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[36]  K. Grice,et al.  Changes in biomarker abundances and sulfur isotopes of pyrite across the Permian-Triassic (P/Tr) Schuchert Dal section (East Greenland) , 2007 .

[37]  P. Sabatier,et al.  Late Quaternary variability of sedimentary nitrogen isotopes in the eastern South Pacific Ocean , 2007 .

[38]  M. Magaritz,et al.  Carbon isotopic change at the base of the upper permian zechstein sequence , 2007 .

[39]  J. Pálfy,et al.  Triassic-Jurassic boundary events: Problems, progress, possibilities , 2007 .

[40]  D. Burdige Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? , 2007, Chemical reviews.

[41]  J. Damsté,et al.  Isorenieratane record in black shales from the Paris Basin, France: Constraints on recycling of respired CO2 as a mechanism for negative carbon isotope shifts during the Toarcian oceanic anoxic event , 2006 .

[42]  L. Schwark,et al.  Sterane biomarkers as indicators of palaeozoic algal evolution and extinction events , 2006 .

[43]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[44]  H. Brumsack The trace metal content of recent organic carbon-rich sediments; implications for Cretaceous black shale formation , 2006 .

[45]  Jeffrey T. Kiehl,et al.  Climate simulation of the latest Permian: Implications for mass extinction , 2005 .

[46]  Kliti Grice,et al.  Photic Zone Euxinia During the Permian-Triassic Superanoxic Event , 2005, Science.

[47]  C. Walters,et al.  The Biomarker Guide , 2004 .

[48]  R. Pancost,et al.  Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2 , 2004 .

[49]  Stefan Schouten,et al.  N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events , 2004 .

[50]  P. Hofmann,et al.  Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales , 2004 .

[51]  A. Coe,et al.  Cyclostratigraphy, orbital tuning and inferred productivity for the type Kimmeridge Clay (Late Jurassic), Southern England , 2004, Journal of the Geological Society.

[52]  J. D. Hudson,et al.  Intermittent euxinia: Reconciliation of a Jurassic black shale with its biofacies , 2004 .

[53]  P. Wignall,et al.  Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France , 2004, Geological Magazine.

[54]  Scarla J. Weeks,et al.  Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWiFS satellite imagery , 2004 .

[55]  B. Jørgensen,et al.  Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central namibian coastal upwelling zone , 2003 .

[56]  M. Taviani,et al.  Calcarenite and sapropel deposition in the Mediterranean Pliocene: shallow‐ and deep‐water record of astronomically driven climatic events , 2003 .

[57]  W. J. Wade,et al.  Permian–Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: Part 1 – Sedimentology , 2003 .

[58]  W. Ricken,et al.  Sequence stratigraphy with emphasis on platform-related parasequences of the Zechstein 2 carbonate (Ca2) – the northern platform margin of the Southern Permian Basin (NE Germany) , 2003 .

[59]  P. Hofmann,et al.  Millennial- to centennial-scale record of African climate variability and organic carbon accumulation in the Coniacian–Santonian eastern tropical Atlantic (Ocean Drilling Program Site 959, off Ivory Coast and Ghana) , 2003 .

[60]  L. Kump,et al.  Comment on “Could the Late Permian deep ocean have been anoxic?” by R. Zhang et al. , 2002 .

[61]  R. Pancost,et al.  Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event , 2002 .

[62]  V. Sarma An evaluation of physical and biogeochemical processes regulating the oxygen minimum zone in the water column of the Bay of Bengal , 2002 .

[63]  R. Pancost,et al.  Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein Sea , 2002 .

[64]  J. Kutzbach,et al.  Simulations of Permian Climate and Comparisons with Climate‐Sensitive Sediments , 2002, The Journal of Geology.

[65]  Hans W. Paerl,et al.  The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?* , 2001 .

[66]  P. Wignall,et al.  Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France , 2001 .

[67]  V. Agostini,et al.  Seasonal patterns of wind-induced upwelling/ downwelling in the Mediterranean Sea , 2001 .

[68]  M. Follows,et al.  Could the Late Permian deep ocean have been anoxic , 2001 .

[69]  C. Ostertag-Henning,et al.  Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala — Holy Cross Mountains/Poland) , 2001 .

[70]  R. Norris,et al.  Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period , 2001, Nature.

[71]  S. Naqvi,et al.  Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf , 2000, Nature.

[72]  H. Brumsack,et al.  The sapropel record of the eastern Mediterranean Sea — results of Ocean Drilling Program Leg 160 , 2000 .

[73]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.

[74]  L. Codispoti,et al.  The oxygen minimum zone in the Arabian Sea during 1995 , 1999 .

[75]  S. M. Barrett,et al.  Microalgal biomarkers: A review of recent research developments , 1998 .

[76]  Stefan Schouten,et al.  Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: Evidence for preservation of carbohydrates through sulfurisation , 1998 .

[77]  J. Damsté,et al.  A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event , 1998 .

[78]  K. Grice,et al.  Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components , 1997 .

[79]  Isozaki,et al.  Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea , 1997, Science.

[80]  I. P. Silva,et al.  Orbitally induced limestone/marlstone rhythms in the Albian—Cenomanian Cismon section (Venetian region, northern Italy): Sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry , 1996 .

[81]  P. Scholle,et al.  Regional setting and role of meteoric water in dolomite formation and diagenesis in an evaporite basin: studies in the Zechstein (Permian) deposits of Poland , 1996 .

[82]  Stefan Schouten,et al.  Restricted utility of aryl isoprenoids as indicators of photic zone anoxia , 1996 .

[83]  K. Grice,et al.  Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids , 1996 .

[84]  K. Grice,et al.  MALEIMIDES (1H-PYRROLE-2,5-DIONES) AS MOLECULAR INDICATORS OF ANOXYGENIC PHOTOSYNTHESIS IN ANCIENT WATER COLUMNS , 1996 .

[85]  Frederik J. Hilgen,et al.  Evaluation of the Plio‐Pleistocene astronomical timescale , 1996 .

[86]  R. Twitchett,et al.  Oceanic Anoxia and the End Permian Mass Extinction , 1996, Science.

[87]  C. Strohmenger,et al.  Sedimentology and palynofacies of the Zechstein 2 Carbonate (Upper Permian, Northwest Germany): implications for sequence stratigraphic subdivision , 1996 .

[88]  J. Maxwell,et al.  NOVEL PORPHYRINS AS MOLECULAR FOSSILS FOR ANOXYGENIC PHOTOSYNTHESIS , 1995 .

[89]  A. V. Duin,et al.  Early diagenesis of bacteriohopanepolyol derivatives: Formation of fossil homohopanoids , 1995 .

[90]  A. Knoll,et al.  Anomalous carbonate precipitates: is the Precambrian the key to the Permian? , 1995, Palaios.

[91]  J. Hayes,et al.  Evidence for gammacerane as an indicator of water column stratification. , 1995, Geochimica et cosmochimica acta.

[92]  H. Ishiga,et al.  Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record , 1994 .

[93]  K. Kaiho Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean , 1994 .

[94]  J. Curiale High-resolution organic record of Bridge Creek deposition, northwest New Mexico , 1994 .

[95]  D. Manning,et al.  Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones , 1994 .

[96]  D. Repeta A high resolution historical record of Holocene anoxygenic primary production in the Black Sea , 1993 .

[97]  J. Hayes,et al.  A 6,000–year sedimentary molecular record of chemocline excursions in the Black Sea , 1993, Nature.

[98]  J. Curiale,et al.  Application of organic geochemistry to sequence stratigraphic analysis: Four corners platform area, New Mexico, U.S.A. , 1992 .

[99]  Bernard P. Boudreau,et al.  On a reactive continuum representation of organic matter diagenesis , 1991 .

[100]  R. Philp,et al.  Geochemical Characterization of Evaporite and Carbonate Depositional Environments and Correlation of Associated Crude Oils in the Black Creek Basin, Alberta , 1989 .

[101]  D. B. Smith,et al.  A ‘North-west Passage’ to the southern Zechstein Basin of the UK North Sea , 1989 .

[102]  J. Rullkötter,et al.  Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments , 1989 .

[103]  R. Cicerone,et al.  Biogeochemical aspects of atmospheric methane , 1988 .

[104]  S. Brassell,et al.  Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils , 1988 .

[105]  H. Jenkyns The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence , 1988 .

[106]  W. Schroeder,et al.  The role of stratification in the deoxygenation of Mobile Bay and adjacent shelf bottom waters , 1987 .

[107]  T. Peryt The Zechstein (Upper Permian) Main Dolomite deposits of the Leba elevation, northern Poland: Facies and depositional history , 1986 .

[108]  R. Summons,et al.  Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology , 1986, Nature.

[109]  H. Jenkyns The early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts , 1985 .

[110]  G. Shanmugam Significance of Coniferous Rain Forests and Related Organic Matter in Generating Commercial Quantities of Oil, Gippsland Basin, Australia , 1985 .

[111]  M. Rossignol-Strick Mediterranean Quaternary sapropels, an immediate response of the african monsoon to variation of insolation , 1985 .

[112]  L. Frakes,et al.  Origin of manganese giants: Sea-level change and anoxic-oxic history , 1984 .

[113]  L E Cronin,et al.  Chesapeake Bay Anoxia: Origin, Development, and Significance , 1984, Science.

[114]  N. Szeverenyi,et al.  Selective preservation and origin of petroleum-forming aquatic kerogen , 1983, Nature.

[115]  M. Vandenbroucke,et al.  Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes , 1980 .

[116]  W. Meinschein,et al.  Sterols as ecological indicators , 1979 .

[117]  B. Simoneit,et al.  Organic geochemical indicators of palaeoenvironmental conditions of sedimentation , 1978 .

[118]  Robert L. Smith,et al.  Denitrification and hydrogen sulfide in the Peru upwelling region during 1976 , 1977 .

[119]  K. Krejci-Graf GEOCHEMICAL FACIES OF SEDIMENTS , 1975 .

[120]  D. McKirdy,et al.  Relationship between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia , 1973 .

[121]  M. Brongersma-Sanders Origin of major cyclicity of evaporites and bituminous rocks: An actualistic model , 1971 .

[122]  J. Smith,et al.  Isoprenoid Hydrocarbons in Coal and Petroleum , 1969, Nature.

[123]  E. G. Purdy Recent Calcium Carbonate Facies of the Great Bahama Bank. 2. Sedimentary Facies , 1963, The Journal of Geology.

[124]  G. Eglinton,et al.  Hydrocarbon Constituents of the Wax Coatings of Plant Leaves: A Taxonomic Survey , 1962, Nature.

[125]  M. Krajewski,et al.  Hydrocarbon potential of the Zechstein Main Dolomite in the western part of the Wielkopolska platform, SW Poland: New sedimentological and geochemical data , 2014 .

[126]  Steven Z. Kassakian,et al.  Oxic, suboxic, and anoxic conditions in the Black Sea , 2007 .

[127]  K. Jaworowski,et al.  Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Miêdzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin , 2007 .

[128]  A. Zuur,et al.  Stratification-induced hypoxia as a structuring factor of macrozoobenthos in the open Gulf of Finland (Baltic Sea) , 2007 .

[129]  R. Summons,et al.  Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada) , 2007 .

[130]  J. Paul The Kupferschiefer: Lithology, stratigraphy, facies and metallogeny of a black-shale. , 2006 .

[131]  E. Hopmans,et al.  A 400-year record of environmental change in an euxinic fjord as revealed by the sedimentary biomarker record , 2004 .

[132]  N. Savage,et al.  The Frasnian-Famennian events in a deep-shelf succession, Subpolar Urals: biotic, depositional, and geochemical records , 2002 .

[133]  R. Pancost,et al.  Enhanced productivity rather than enhanced preservation led to increased organic carbon burial in the euxinic southern proto North Atlantic Ocean during the Cenomanian/Turonian Oceanic Anoxic Event , 2002 .

[134]  A. Cramp,et al.  Neogene sapropels in the Mediterranean: a review , 1999 .

[135]  J. Imhoff Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria , 1995 .

[136]  L. Kann,et al.  Pelagic and benthic ecology of the lower interface of the Eastern Tropical Pacific oxygen minimum zone , 1995 .

[137]  B. Sageman,et al.  Marine Shales: Depositional Mechanisms and Environments of Ancient Deposits , 1994 .

[138]  B. Eadie,et al.  Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan , 1993 .

[139]  H. Cypionka,et al.  An extremely low‐light adapted phototrophic sulfur bacterium from the Black Sea , 1992 .

[140]  Kenneth E. Peters,et al.  Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum , 1991 .

[141]  L. Schwark,et al.  Aromatic hydrocarbon composition of the Permian Kupferschiefer in the Lower Rhine Basin, NW Germany , 1990 .

[142]  F. Kenig,et al.  Sedimentation, distribution and diagenesis of organic matter in a recent carbonate environment, Abu Dhabi, U.A.E. , 1990 .

[143]  S. Brassell,et al.  Late cretaceous anoxic events in the Brazilian continental margin , 1989 .

[144]  P. J. Grantham,et al.  Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time , 1988 .

[145]  J. S. Sinninghe Damsté,et al.  Application of biological markers in the recognition of palaeohypersaline environments , 1988, Geological Society, London, Special Publications.

[146]  S. Brassell,et al.  Organic geochemical characterisation of depositional palaeoenvironments of source rocks and oils in Brazilian marginal basins , 1988 .

[147]  P. Sundararaman,et al.  Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany , 1986 .

[148]  J. Volkman A review of sterol markers for marine and terrigenous organic matter , 1986 .

[149]  R. A. Noble,et al.  Identification of some diterpenoid hydrocarbons in petroleum , 1986 .

[150]  S. Brassell,et al.  Peculiarities of salt lake sediments as potential source rocks in China , 1986 .

[151]  P. Turner,et al.  Chemical and isotopic studies of a core of Marl Slate from NE England: influence of freshwater influx into the Zechstein Sea , 1986, Geological Society, London, Special Publications.

[152]  P. Albrecht,et al.  The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: A molecular approach , 1986 .

[153]  J. Curiale,et al.  Biological marker distribution and significance in oils and rocks of the Monterey Formation, California , 1985 .

[154]  P. Albrecht,et al.  Identification of a novel series of tetracyclic terpene hydrocarbons (C24–C27) in sediments and petroleums , 1982 .

[155]  Smith Db,et al.  THE EVOLUTION OF THE ENGLISH ZECHSTEIN BASIN , 1981 .

[156]  J. Moldowan,et al.  The effect of thermal stress on source-rock quality as measured by hopane stereochemistry , 1980 .

[157]  W. Ernst Geochemical Facies Analysis , 1970 .