The Caligus rogercresseyi miRNome: Discovery and transcriptome profiling during the sea lice ontogeny

[1]  I. Romslo,et al.  Host blood: a major food component for the parasitic copepod Lepeophtheirus salmonis Kroyeri, 1838 (Crustacea: Caligidae) , 1976 .

[2]  C. Sommerville,et al.  Reduced sensitivity of the salmon louse, Lepeophtheirus salmonis, to the organophosphate dichlorvos , 1992 .

[3]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[4]  M. Roth,et al.  Field trials on the efficacy of the organophosphorus compound azamethiphos for the control of sea lice (Copepoda: Caligidae) infestations of farmed Atlantic salmon (Salmo salar) , 1996 .

[5]  Stewart C. Johnson,et al.  CHARACTERIZATION OF PROTEASES IN THE SKIN MUCUS OF ATLANTIC SALMON (SALMO SALAR) INFECTED WITH THE SALMON LOUSE (LEPEOPHTHEIRUS SALMONIS) AND IN WHOLE-BODY LOUSE HOMOGENATE , 2000, The Journal of parasitology.

[6]  M. Brimacombe,et al.  The physiological response of Atlantic salmon, Salmo salar L., to a single experimental challenge with sea lice, Lepeophtheirus salmonis , 2000 .

[7]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[8]  S. Cohen,et al.  The bantam gene regulates Drosophila growth. , 2002, Genetics.

[9]  J. Duston,et al.  Emamectin benzoate: an effective in-feed treatment against the gill parasite Salmincola edwardsii on brook trout , 2002 .

[10]  M. Fast,et al.  ENZYMES RELEASED FROM LEPEOPHTHEIRUS SALMONIS IN RESPONSE TO MUCUS FROM DIFFERENT SALMONIDS , 2003, The Journal of parasitology.

[11]  S. Sevatdal,et al.  Determination of reduced sensitivity in sea lice (Lepeophtheirus salmonis Krøyer) against the pyrethroid deltamethrin using bioassays and probit modelling , 2003 .

[12]  L. González,et al.  Life cycle of Caligus rogercresseyi, (Copepoda: Caligidae) parasite of Chilean reared salmonids , 2003 .

[13]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[14]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[15]  F. Nilsen,et al.  Molecular characterisation of five trypsin-like peptidase transcripts from the salmon louse (Lepeophtheirus salmonis) intestine. , 2004, International journal for parasitology.

[16]  R. ffrench-Constant,et al.  The genetics and genomics of insecticide resistance. , 2004, Trends in genetics : TIG.

[17]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[18]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[19]  F. Nilsen,et al.  Organisation of trypsin genes in the salmon louse (Lepeophtheirus salmonis, Crustacea, copepoda) genome. , 2005, Gene.

[20]  X. Belles,et al.  Endocrine peptides and insect reproduction , 2005 .

[21]  Jin-Wu Nam,et al.  Genomics of microRNA. , 2006, Trends in genetics : TIG.

[22]  Baohong Zhang,et al.  MicroRNAs and their regulatory roles in animals and plants , 2007, Journal of cellular physiology.

[23]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[24]  S. Sevatdal,et al.  Sensitivity assessment of Caligus rogercresseyi to emamectin benzoate in Chile , 2008 .

[25]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[26]  D. Hartline,et al.  Short Communication Identification of A-type allatostatins possessing YXFGI/Vamide , 2007 .

[27]  M. Tufail,et al.  Molecular characteristics of insect vitellogenins. , 2008, Journal of insect physiology.

[28]  B. Wilhelm,et al.  RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. , 2009, Methods.

[29]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[30]  J. Treasurer,et al.  Effectiveness of hydrogen peroxide in the control of Caligus rogercresseyi in Chile and implications for sea louse management , 2010 .

[31]  S. Bravo The reproductive output of sea lice Caligus rogercresseyi under controlled conditions. , 2010, Experimental parasitology.

[32]  G. Edgecombe,et al.  A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata , 2011, Proceedings of the Royal Society B: Biological Sciences.

[33]  Richard Cowper-Sal·lari,et al.  microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate , 2010, Proceedings of the National Academy of Sciences.

[34]  Wei Xie,et al.  Localized expression pattern of miR-184 in Drosophila , 2010, Molecular Biology Reports.

[35]  B. S. Sekhon Matrix metalloproteinases – an overview , 2010 .

[36]  S. Mathivanan,et al.  Exosomes: extracellular organelles important in intercellular communication. , 2010, Journal of proteomics.

[37]  Genomic Resources for Sea Lice: Analysis of ESTs and Mitochondrial Genomes , 2011, Marine Biotechnology.

[38]  F. Nilsen,et al.  Characterisation of two vitellogenins in the salmon louse Lepeophtheirus salmonis: molecular, functional and evolutional analysis. , 2011, Diseases of aquatic organisms.

[39]  Ana M. Aransay,et al.  miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments , 2011, Nucleic Acids Res..

[40]  G. Chawla,et al.  MicroRNAs in Drosophila development. , 2011, International review of cell and molecular biology.

[41]  R. Cameron,et al.  microRNA complements in deuterostomes: origin and evolution of microRNAs , 2011, Evolution & development.

[42]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[43]  K. Irvine,et al.  Cooperative regulation of growth by Yorkie and Mad through bantam. , 2011, Developmental cell.

[44]  C. Li,et al.  Isolation and characterization of cDNAs encoding Ars2 and Pasha homologues, two components of the RNA interference pathway in Litopenaeus vannamei. , 2012, Fish & shellfish immunology.

[45]  New Directions of EvoDevo: Revisiting Ideas of Professor Hotta , 2012, Journal of neurogenetics.

[46]  Günter P. Wagner,et al.  Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples , 2012, Theory in Biosciences.

[47]  A. Hardikar,et al.  Noncoding RNAs , 2012, Experimental diabetes research.

[48]  P. Westfall,et al.  Understanding Advanced Statistical Methods , 2013 .

[49]  C. Revie,et al.  Understanding sources of sea lice for salmon farms in Chile. , 2013, Preventive veterinary medicine.

[50]  L. Bally-Cuif,et al.  Cellular Neuroscience , 2022 .

[51]  C. Gallardo‐Escárate,et al.  Identification of immune-related SNPs in the transcriptome of Mytilus chilensis through high-throughput sequencing. , 2013, Fish & shellfish immunology.

[52]  A. Christie,et al.  Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome. , 2013, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[53]  M. Milán,et al.  bantam miRNA Promotes Systemic Growth by Connecting Insulin Signaling and Ecdysone Production , 2013, Current Biology.

[54]  C. Gallardo‐Escárate,et al.  SNP discovery in the marine gastropod Concholepas concholepas by high-throughput transcriptome sequencing , 2013, Conservation Genetics Resources.

[55]  S. Cohen,et al.  miR-124 controls male reproductive success in Drosophila , 2013, eLife.

[56]  B. Milligan,et al.  Use of Atlantic salmon, Salmo salar L., farm treatment data and bioassays to assess for resistance of sea lice, Lepeophtheirus salmonis, to emamectin benzoate (SLICE(®) ) in British Columbia, Canada. , 2013, Journal of fish diseases.

[57]  Xiaofeng Wang,et al.  miRNAs: Biogenesis, Origin and Evolution, Functions on Virus-Host Interaction , 2013, Cellular Physiology and Biochemistry.

[58]  B. Finstad,et al.  Impact of early salmon louse, Lepeophtheirus salmonis, infestation and differences in survival and marine growth of sea-ranched Atlantic salmon, Salmo salar L., smolts 1997–2009 , 2013, Journal of fish diseases.

[59]  S. Asgari,et al.  An insect trypsin-like serine protease as a target of microRNA: utilization of microRNA mimics and inhibitors by oral feeding. , 2013, Insect biochemistry and molecular biology.

[60]  Ana Kozomara,et al.  Sex-Biased Expression of MicroRNAs in Schistosoma mansoni , 2013, PLoS neglected tropical diseases.

[61]  T. Doak,et al.  Peptidergic signaling in Calanus finmarchicus (Crustacea, Copepoda): in silico identification of putative peptide hormones and their receptors using a de novo assembled transcriptome. , 2013, General and comparative endocrinology.

[62]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[63]  C. Gallardo‐Escárate,et al.  Insights into the olfactory system of the ectoparasite Caligus rogercresseyi: molecular characterization and gene transcription analysis of novel ionotropic receptors. , 2014, Experimental parasitology.

[64]  T. Rana,et al.  Gene regulation by non-coding RNAs , 2014, Critical reviews in biochemistry and molecular biology.

[65]  G. Qiu,et al.  Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR-133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheir sinensis (Crustacea:Decapoda) , 2014, BMC Genomics.

[66]  Jun Lu,et al.  STarMir: a web server for prediction of microRNA binding sites , 2014, Nucleic Acids Res..

[67]  C. Gallardo‐Escárate,et al.  High-throughput SNP discovery and transcriptome expression profiles from the salmon louse Caligus rogercresseyi (Copepoda: Caligidae). , 2014, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[68]  C. Théry,et al.  Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. , 2014, Annual review of cell and developmental biology.

[69]  C. Gallardo‐Escárate,et al.  Discovery of sex-related genes through high-throughput transcriptome sequencing from the salmon louse Caligus rogercresseyi. , 2014, Marine genomics.

[70]  Antonio Marco,et al.  Sex-biased expression of microRNAs in Drosophila melanogaster , 2013, Open Biology.

[71]  M. A. Bueno-Ibarra,et al.  Characterization of the transcriptomes of Haliotis rufescens reproductive tissues , 2014 .

[72]  C. Gallardo‐Escárate,et al.  RNA-Seq Analysis Using De Novo Transcriptome Assembly as a Reference for the Salmon Louse Caligus rogercresseyi , 2014, PloS one.

[73]  C. Gallardo‐Escárate,et al.  TLR and IMD signaling pathways from Caligus rogercresseyi (Crustacea: Copepoda): in silico gene expression and SNPs discovery. , 2014, Fish & shellfish immunology.

[74]  C. Gallardo‐Escárate,et al.  Transcriptome analysis of the couch potato (CPO) protein reveals an expression pattern associated with early development in the salmon louse Caligus rogercresseyi. , 2014, Gene.

[75]  C. Gallardo‐Escárate,et al.  Prohibitin-2 gene reveals sex-related differences in the salmon louse Caligus rogercresseyi. , 2015, Gene.

[76]  S. Asgari,et al.  MicroRNA biogenesis pathway from the salmon louse (Caligus rogercresseyi): emerging role in delousing drug response. , 2015, Gene.

[77]  A. Gonçalves,et al.  Transcriptome immunomodulation of in-feed additives in Atlantic salmon Salmo salar infested with sea lice Caligus rogercresseyi. , 2015, Fish & shellfish immunology.

[78]  C. Gallardo‐Escárate,et al.  Transcriptomic insights on the ABC transporter gene family in the salmon louse Caligus rogercresseyi , 2015, Parasites & Vectors.

[79]  A. Gonçalves,et al.  Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi , 2015, PloS one.

[80]  E. Lai,et al.  Multiple In Vivo Biological Processes Are Mediated by Functionally Redundant Activities of Drosophila mir-279 and mir-996 , 2015, PLoS genetics.

[81]  C. Gallardo‐Escárate,et al.  Two novel male-associated peroxinectin genes are downregulated by exposure to delousing drugs in Caligus rogercresseyi. , 2015, Gene.

[82]  Zhi Wang,et al.  Differential expression of microRNAs in shrimp Marsupenaeus japonicus in response to Vibrio alginolyticus infection. , 2016, Developmental and comparative immunology.

[83]  C. Gallardo‐Escárate,et al.  Aquaporin family genes exhibit developmentally-regulated and host-dependent transcription patterns in the sea louse Caligus rogercresseyi. , 2016, Gene.

[84]  Ping Liu,et al.  Identification and profiling of growth-related microRNAs of the swimming crab Portunus trituberculatus by using Solexa deep sequencing. , 2016, Marine genomics.

[85]  C. Gallardo‐Escárate,et al.  Density-dependent effects of Caligus rogercresseyi infestation on the immune responses of Salmo salar. , 2016, Fish & shellfish immunology.

[86]  X. Ge,et al.  Identification and comparative analysis of the oriental river prawn (Macrobrachium nipponense) microRNA expression profile during hypoxia using a deep sequencing approach. , 2016, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[87]  I. Hirono,et al.  MIRNAS FROM SHRIMP PENAEUS MONODON AND ITS POSSIBLE ROLE IN INNATE IMMUNITY , 2016 .

[88]  G. Cheng,et al.  Molecular characterization of S. japonicum exosome-like vesicles reveals their regulatory roles in parasite-host interactions , 2016, Scientific Reports.

[89]  C. Gallardo‐Escárate,et al.  Comparative immunity of Salmo salar and Oncorhynchus kisutch during infestation with the sea louse Caligus rogercresseyi: An enrichment transcriptome analysis. , 2016, Fish & shellfish immunology.