Hyperbolic metamaterials for dispersion-assisted directional light emission.

A novel method is presented to outcouple high spatial frequency (large-k) waves from hyperbolic metamaterials (HMMs) without the use of a grating. This approach relies exclusively on dispersion engineering, and enables preferential power extraction from the top or from the side of a HMM. Multilayer (ML) HMMs are shown to be better suited for lateral outcoupling, while nanowire HMMs are the most convenient choice for top outcoupling. A 6-fold increase in laterally extracted power is predicted for a dipole-HMM system with a Ag/Si ML operating at λ = 530 nm, when metallic filling ratio is changed from an unoptimized to the optimized one. This new design concept supports the cost-effective mass production of high-speed HMM optical transmitters.

[1]  Zubin Jacob,et al.  Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction , 2015 .

[2]  Eric E Fullerton,et al.  Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. , 2014, Nature nanotechnology.

[3]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[4]  Yeshaiahu Fainman,et al.  Transmission Enhancement of High-$k$ Waves through Metal-InGaAsP Multilayers Calculated via Scattering Matrix Method with Semi-Classical Optical Gain , 2015, 1508.00179.

[5]  Xiang Zhang,et al.  All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. , 2008, Optics express.

[6]  Filippo Capolino,et al.  Hyperbolic metamaterial as super absorber for scattered fields generated at its surface , 2012 .

[7]  Sergei V. Zhukovsky,et al.  Dipole radiation near hyperbolic metamaterials: Applicability of effective medium approximation , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[8]  Dominic Lepage,et al.  Enhanced spontaneous emission inside hyperbolic metamaterials. , 2014, Optics express.

[9]  John F. Muth,et al.  Smart Transmitters and Receivers for Underwater Free-Space Optical Communication , 2012, IEEE Journal on Selected Areas in Communications.

[10]  M. Sinclair,et al.  Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials , 2015, 1503.06246.

[11]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[12]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[13]  Yu-Chueh Hung,et al.  Enhancement of light extraction based on nanowire hyperbolic metamaterials in a grating structure , 2016, SPIE Photonics Europe.

[14]  Boubacar Kante,et al.  Gain-enhanced high-k transmission through metal-semiconductor hyperbolic metamaterials , 2015 .

[15]  J. Khurgin,et al.  Hyperbolic metamaterials: beyond the effective medium theory , 2016 .

[16]  Z. Jacob,et al.  Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. , 2012, Optics express.

[17]  G. Wurtz,et al.  Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry. , 2014, Optics express.

[18]  Haifeng Hu,et al.  Broadband absorption engineering of hyperbolic metafilm patterns , 2014, Scientific Reports.

[19]  Y. Fainman,et al.  Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles , 2017, Proceedings of the National Academy of Sciences.

[20]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[21]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[22]  Y. Fainman,et al.  High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials. , 2016, Small.

[23]  P. R. West,et al.  Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves. , 2015, Nano letters.

[24]  E. Narimanov,et al.  Realization of mid-infrared graphene hyperbolic metamaterials , 2016, Nature Communications.

[25]  A. Kildishev,et al.  Enhancement of single‑photon emission from nitrogen‑vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial , 2015 .

[26]  Zhaowei Liu,et al.  A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm , 2009 .

[27]  V. Podolskiy,et al.  Highly confined optical modes in nanoscale metal-dielectric multilayers , 2007, physics/0703137.

[28]  Zhaowei Liu,et al.  Hyperbolic metamaterials and their applications , 2015 .

[29]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[30]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[31]  Ting Xu,et al.  All-angle negative refraction and active flat lensing of ultraviolet light , 2013, Nature.

[32]  Filippo Capolino,et al.  Radiative emission enhancement using nano-antennas made of hyperbolic metamaterial resonators , 2014, 1405.6165.

[33]  Pochi Yeh,et al.  Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) , 1997 .

[34]  G. Agrawal Fiber-Optic Communication Systems: Agrawal/Fiber-Optic , 2010 .

[35]  K. V. Sreekanth,et al.  Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials , 2014, Scientific Reports.

[36]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[37]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[38]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[39]  H. Haas,et al.  LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications , 2016, Journal of Lightwave Technology.

[40]  Z. Jacob,et al.  Controlling spontaneous emission with metamaterials. , 2010, Optics letters.

[41]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[42]  Ming C. Wu,et al.  Optical antenna enhanced spontaneous emission , 2015, Proceedings of the National Academy of Sciences.

[43]  Yeshaiahu Fainman,et al.  Practical realization of deeply subwavelength multilayer metal-dielectric nanostructures based on InGaAsP (Presentation Recording) , 2015, SPIE NanoScience + Engineering.

[44]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[45]  Z. Jacob,et al.  Enhanced and directional single-photon emission in hyperbolic metamaterials , 2013, 1301.4676.

[46]  Natalia M. Litchinitser,et al.  Non-resonant hyperlens in the visible range , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[47]  Sheng Shen,et al.  Near-field energy extraction with hyperbolic metamaterials. , 2015, Nano letters.

[48]  Jiangtao Cheng,et al.  Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance. , 2015, Optics express.

[49]  Prashant Shekhar,et al.  Hyperbolic metamaterials: fundamentals and applications , 2014, Nano Convergence.

[50]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[51]  Vladimir Liberman,et al.  Tunable VO2/Au hyperbolic metamaterial , 2016 .

[52]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[53]  Harry A. Atwater,et al.  Field-effect induced tunability in hyperbolic metamaterials , 2015 .

[54]  Zetian Mi,et al.  III-Nitride nanowire optoelectronics , 2015 .

[55]  Jingbo Sun,et al.  Experimental Demonstration of Demagnifying Hyperlens. , 2016, Nano letters.

[56]  Yeshaiahu Fainman,et al.  Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies. , 2014, Optics express.

[57]  Xiaodong Xu,et al.  Single Defect Light-Emitting Diode in a van der Waals Heterostructure. , 2016, Nano letters.

[58]  Xiang Zhang,et al.  Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers. , 2016, Optics express.

[59]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[60]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[61]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[62]  Natalia M. Litchinitser,et al.  Experimental demonstration of a non-resonant hyperlens in the visible spectral range , 2015, Nature communications.

[63]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[64]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[65]  Y. Kivshar,et al.  Complex band structure of nanostructured metal-dielectric metamaterials. , 2013, Optics express.

[66]  Olaf Ziemann,et al.  GaN Light-Emitting Diodes for up to 5.5-Gb/s Short-Reach Data Transmission Over SI-POF , 2014, IEEE Photonics Technology Letters.