Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature.

The volume depolarization ratio of the molecular backscatter signal detected with polarization lidar varies by a factor of nearly 4 depending on whether the rotational Raman bands are included in the detected signals of the individual system or not. If the rotational Raman spectrum is included partially in the signals, this calibration factor depends on the temperature of the atmosphere. This dependency is studied for different spectral widths of the receiving channels. In addition, the sensitivity to differences between the laser wavelength and the center wavelength of the receiver are discussed.

[1]  Y. Iwasaka,et al.  Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles. , 2001, Applied optics.

[2]  C Y She,et al.  Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars. , 2001, Applied optics.

[3]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[4]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[5]  J. Biele,et al.  Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.

[6]  J. Reichardt,et al.  Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. , 2000, Applied optics.

[7]  Andreas Behrendt,et al.  optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations , 2000 .

[8]  A. Adriani,et al.  Comparison of various linear depolarization parameters measured by lidar. , 1999, Applied optics.

[9]  Atmospheric Raman depolarization-ratio measurements. , 1994, Applied optics.

[10]  Alain Hauchecorne,et al.  Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km , 1993, IEEE Trans. Geosci. Remote. Sens..

[11]  K. Sassen The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment , 1991 .

[12]  G. S. Kent,et al.  Dual‐polarization airborne lidar observations of polar stratospheric cloud evolution , 1990 .

[13]  N. S. Higdon,et al.  Airborne lidar observations in the wintertime Arctic stratosphere: Polar stratospheric clouds , 1990 .

[14]  Michael K. Griffin,et al.  Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications , 1989 .

[15]  A. C. Dilley,et al.  Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .

[16]  K Sassen,et al.  Lidar depolarization from multiple scattering in marine stratus clouds. , 1986, Applied optics.

[17]  George W. Kattawar,et al.  Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols , 1981 .

[18]  A. T. Young Revised depolarization corrections for atmospheric extinction. , 1980, Applied optics.

[19]  I. I. Matrosov,et al.  Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules , 1979 .

[20]  J. Marling,et al.  1.05-1.44 µm tunability and performance of the CW Nd3+:YAG laser , 1978, IEEE Journal of Quantum Electronics.

[21]  S. Pal,et al.  Multiple scattering in atmospheric clouds: lidar observations. , 1976, Applied optics.

[22]  Carl M. Penney,et al.  Absolute rotational Raman cross sections for N2, O2, and CO2 , 1974 .

[23]  S. Pal,et al.  Polarization properties of lidar backscattering from clouds. , 1973, Applied optics.

[24]  Thomas B. A. Senior,et al.  Rayleigh scattering , 1973 .

[25]  Kenneth Sassen,et al.  Observations by Lidar of Linear Depolarization Ratios for Hydrometeors. , 1971 .

[26]  R. Butcher,et al.  On the use of a Fabry—Perot etalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  J. Hunt,et al.  Triplet structure of the rotational Raman spectrum of oxygen , 1969 .

[28]  G. Placzek,et al.  Rayleigh-Streuung und Raman-Effekt , 1934 .

[29]  Пётр Петрович Лазарев Handbuch der Radiologie , 1915 .