Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature.
暂无分享,去创建一个
[1] Y. Iwasaka,et al. Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles. , 2001, Applied optics.
[2] C Y She,et al. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars. , 2001, Applied optics.
[3] Kenneth Sassen,et al. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .
[4] J. Comstock,et al. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .
[5] J. Biele,et al. Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.
[6] J. Reichardt,et al. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. , 2000, Applied optics.
[7] Andreas Behrendt,et al. optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations , 2000 .
[8] A. Adriani,et al. Comparison of various linear depolarization parameters measured by lidar. , 1999, Applied optics.
[9] Atmospheric Raman depolarization-ratio measurements. , 1994, Applied optics.
[10] Alain Hauchecorne,et al. Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km , 1993, IEEE Trans. Geosci. Remote. Sens..
[11] K. Sassen. The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment , 1991 .
[12] G. S. Kent,et al. Dual‐polarization airborne lidar observations of polar stratospheric cloud evolution , 1990 .
[13] N. S. Higdon,et al. Airborne lidar observations in the wintertime Arctic stratosphere: Polar stratospheric clouds , 1990 .
[14] Michael K. Griffin,et al. Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications , 1989 .
[15] A. C. Dilley,et al. Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .
[16] K Sassen,et al. Lidar depolarization from multiple scattering in marine stratus clouds. , 1986, Applied optics.
[17] George W. Kattawar,et al. Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols , 1981 .
[18] A. T. Young. Revised depolarization corrections for atmospheric extinction. , 1980, Applied optics.
[19] I. I. Matrosov,et al. Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules , 1979 .
[20] J. Marling,et al. 1.05-1.44 µm tunability and performance of the CW Nd3+:YAG laser , 1978, IEEE Journal of Quantum Electronics.
[21] S. Pal,et al. Multiple scattering in atmospheric clouds: lidar observations. , 1976, Applied optics.
[22] Carl M. Penney,et al. Absolute rotational Raman cross sections for N2, O2, and CO2 , 1974 .
[23] S. Pal,et al. Polarization properties of lidar backscattering from clouds. , 1973, Applied optics.
[24] Thomas B. A. Senior,et al. Rayleigh scattering , 1973 .
[25] Kenneth Sassen,et al. Observations by Lidar of Linear Depolarization Ratios for Hydrometeors. , 1971 .
[26] R. Butcher,et al. On the use of a Fabry—Perot etalon for the determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[27] J. Hunt,et al. Triplet structure of the rotational Raman spectrum of oxygen , 1969 .
[28] G. Placzek,et al. Rayleigh-Streuung und Raman-Effekt , 1934 .
[29] Пётр Петрович Лазарев. Handbuch der Radiologie , 1915 .