An Application of Relation Algebra to Lexical Databases

This paper presents an application of relation algebra to lexical databases. The semantics of knowledge representation formalisms and query languages can be provided either via a set-theoretic semantics or via an algebraic structure. With respect to formalisms based on n-ary relations (such as relational databases or power context families), a variety of algebras is applicable. In standard relational databases and in formal concept analysis (FCA) research, the algebra of choice is usually some form of Cylindric Set Algebra (CSA) or Peircean Algebraic Logic (PAL). A completely different choice of algebra is a binary Relation Algebra (RA). In this paper, it is shown how RA can be used for modelling FCA applications with respect to lexical databases.

[1]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[2]  Tomasz Imielinski,et al.  The Relational Model of Data and Cylindric Algebras , 1984, J. Comput. Syst. Sci..

[3]  Peter Mark Roget,et al.  Roget's International Thesaurus , 1977 .

[4]  Roger D. Maddux,et al.  The origin of relation algebras in the development and axiomatization of the calculus of relations , 1991, Stud Logica.

[5]  Algebraic logic , 1985, Problem books in mathematics.

[6]  Vaughan R. Pratt,et al.  On the Syllogism: IV; and on the Logic of Relations , 2022 .

[7]  L. John Old,et al.  Modelling Lexical Databases with Formal Concept Analysis , 2004, J. Univers. Comput. Sci..

[8]  Reinhard Pöschel,et al.  The Power of Peircean Algebraic Logic (PAL) , 2004, ICFCA.

[9]  P. Veloso,et al.  Fork Algebras: Past, Present and Future , 2004 .

[10]  Rudolf Wille,et al.  Existential Concept Graphs of Power Context Families , 2002, ICCS.

[11]  Bernhard Ganter,et al.  Conceptual Structures: Logical, Linguistic, and Computational Issues , 2000, Lecture Notes in Computer Science.

[12]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[13]  Uta Priss An FCA Interpretation of Relation Algebra , 2006, ICFCA.

[14]  E. F. Codd,et al.  A Relational Model for Large Shared Data Banks , 1970 .

[15]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[16]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[17]  Thomas Y.crowell Rogets International Thesaurus , 1946 .

[18]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[19]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[20]  Albert-László Barabási,et al.  Linked: The New Science of Networks , 2002 .

[21]  Ki Hang Kim Boolean matrix theory and applications , 1982 .

[22]  Uta Priss,et al.  Lattice-based information retrieval , 2000 .

[23]  Vaughan R. Pratt,et al.  The Second Calculus of Binary Relations , 1993, MFCS.

[24]  Galia Angelova,et al.  Conceptual Structures: Integration and Interfaces , 2002, Lecture Notes in Computer Science.

[25]  Gerd Stumme,et al.  A Contextual-Logic Extension of TOSCANA , 2000, ICCS.

[26]  Thomas A. Schreiber,et al.  The University of South Florida free association, rhyme, and word fragment norms , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[27]  Jan Van den Bussche,et al.  Applications of Alfred Tarski's Ideas in Database Theory , 2001, CSL.

[28]  S. Strogatz Exploring complex networks , 2001, Nature.

[29]  Robin Milner Action Calculi, or Syntactic Action Structures , 1993, MFCS.

[30]  Uta Priss,et al.  Relational concept analysis: semantic structures in dictionaries and lexical databases , 1998 .