Yes, the missing axiom of matroid theory is lost forever
暂无分享,去创建一个
[1] Dillon Mayhew,et al. The excluded minors for the class of matroids that are binary or ternary , 2011, Eur. J. Comb..
[2] Leonid Libkin,et al. Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.
[3] Petr Hlinený. Branch-width, parse trees, and monadic second-order logic for matroids , 2006, J. Comb. Theory, Ser. B.
[4] H. Whitney. On the Abstract Properties of Linear Dependence , 1935 .
[5] Leonid Libkin,et al. Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .
[6] Ryan Kinser,et al. New inequalities for subspace arrangements , 2009, J. Comb. Theory, Ser. A.
[7] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[8] Petr Hlinený,et al. On Matroid Properties Definable in the MSO Logic , 2003, MFCS.
[9] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[10] James G. Oxley,et al. Totally Free Expansions of Matroids , 2002, J. Comb. Theory, Ser. B.
[11] Thomas Lengauer,et al. Efficient Analysis of Graph Properties on Context-free Graph Languages (Extended Abstract) , 1988, ICALP.
[12] Jim Geelen,et al. Some open problems on excluding a uniform matroid , 2008, Adv. Appl. Math..
[13] A. Nerode,et al. Linear automaton transformations , 1958 .
[14] Dillon Mayhew,et al. IS THE MISSING AXIOM OF MATROID THEORY LOST FOREVER , 2014 .
[15] M. Lunelli,et al. Representation of matroids , 2002, math/0202294.
[16] Thomas Zaslavsky,et al. Biased graphs IV: Geometrical realizations , 2003, J. Comb. Theory, Ser. B.
[17] James G. Oxley,et al. Matroid theory , 1992 .
[18] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[19] Jörg Flum,et al. Finite model theory , 1995, Perspectives in Mathematical Logic.
[20] J. Geelen,et al. Solving Rota's Conjecture , 2014 .