Yes, the missing axiom of matroid theory is lost forever

We prove there is no sentence in the monadic second-order language MS0 that characterises when a matroid is representable over at least one field, and no sentence that characterises when a matroid is K-representable, for any infinite field K. By way of contrast, because Rota's Conjecture is true, there is a sentence that characterises F-representable matroids, for any finite field F.

[1]  Dillon Mayhew,et al.  The excluded minors for the class of matroids that are binary or ternary , 2011, Eur. J. Comb..

[2]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[3]  Petr Hlinený Branch-width, parse trees, and monadic second-order logic for matroids , 2006, J. Comb. Theory, Ser. B.

[4]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[5]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[6]  Ryan Kinser,et al.  New inequalities for subspace arrangements , 2009, J. Comb. Theory, Ser. A.

[7]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[8]  Petr Hlinený,et al.  On Matroid Properties Definable in the MSO Logic , 2003, MFCS.

[9]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[10]  James G. Oxley,et al.  Totally Free Expansions of Matroids , 2002, J. Comb. Theory, Ser. B.

[11]  Thomas Lengauer,et al.  Efficient Analysis of Graph Properties on Context-free Graph Languages (Extended Abstract) , 1988, ICALP.

[12]  Jim Geelen,et al.  Some open problems on excluding a uniform matroid , 2008, Adv. Appl. Math..

[13]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[14]  Dillon Mayhew,et al.  IS THE MISSING AXIOM OF MATROID THEORY LOST FOREVER , 2014 .

[15]  M. Lunelli,et al.  Representation of matroids , 2002, math/0202294.

[16]  Thomas Zaslavsky,et al.  Biased graphs IV: Geometrical realizations , 2003, J. Comb. Theory, Ser. B.

[17]  James G. Oxley,et al.  Matroid theory , 1992 .

[18]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[19]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[20]  J. Geelen,et al.  Solving Rota's Conjecture , 2014 .