A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER

We develop a theoretical framework that combines measurements of galaxy–galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy–dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy–dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, “plateau,” knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed “plateau” feature in the stellar mass function at M* ∼ 2 × 1010 M☉ is due to the transition that occurs in the stellar-to-halo mass relation at Mh ∼ 1012 M☉ from a low-mass power-law regime to a sub-exponential function at higher stellar mass.

[1]  J. Tinker,et al.  THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.

[2]  B. Lundgren,et al.  GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 < z < 2 , 2010, 1012.1317.

[3]  Risa H. Wechsler,et al.  STATISTICS OF SATELLITE GALAXIES AROUND MILKY-WAY-LIKE HOSTS , 2010, 1011.6373.

[4]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[5]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[6]  B. Jain,et al.  Cosmological Tests of Gravity , 2010, 1004.3294.

[7]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[8]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[9]  F. Schmidt Dynamical Masses in Modified Gravity , 2010, 1003.0409.

[10]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[11]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[12]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[13]  D. Thompson,et al.  THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z ∼ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY , 2009, 0910.5720.

[14]  Y. Mellier,et al.  A WEAK LENSING STUDY OF X-RAY GROUPS IN THE COSMOS SURVEY: FORM AND EVOLUTION OF THE MASS–LUMINOSITY RELATION , 2009, 0910.5219.

[15]  C. Stubbs,et al.  Equivalence Principle Implications of Modified Gravity Models , 2009, 0905.2966.

[16]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[17]  Case Western Reserve University,et al.  HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.

[18]  H. Mo,et al.  GALAXY GROUPS IN THE SDSS DR4. III. THE LUMINOSITY AND STELLAR MASS FUNCTIONS , 2008, 0808.0539.

[19]  S. More,et al.  Satellite kinematics – II. The halo mass–luminosity relation of central galaxies in SDSS , 2008, 0807.4532.

[20]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[21]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[22]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[23]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[24]  J. Ostriker,et al.  A non-parametric model for linking galaxy luminosity with halo/subhalo mass: are brightest cluster galaxies special? , 2008 .

[25]  P. Norberg,et al.  Massive dark matter haloes around bright isolated galaxies in the 2dFGRS , 2007, 0710.5473.

[26]  J. Frieman,et al.  Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation , 2007, 0709.1159.

[27]  R. Nichol,et al.  The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters , 2007, 0704.3614.

[28]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[29]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[30]  C. Conselice,et al.  Evolution in the Halo Masses of Isolated Galaxies between z ~ 1 and z ~ 0: From DEEP2 to SDSS , 2006, astro-ph/0607204.

[31]  P. Norberg,et al.  On the Luminosity Dependence of the Galaxy Pairwise Velocity Dispersion , 2006, astro-ph/0603543.

[32]  J. Brinkmann,et al.  Density profiles of galaxy groups and clusters from SDSS galaxy–galaxy weak lensing , 2006, astro-ph/0605476.

[33]  A. Heavens,et al.  Potential sources of contamination to weak lensing measurements: constraints from N-body simulations , 2006, astro-ph/0604001.

[34]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[35]  Princeton University.,et al.  The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass: Are First Brightest Galaxies Special? , 2005, astro-ph/0701096.

[36]  J. Tinker,et al.  From Galaxy-Galaxy Lensing to Cosmological Parameters , 2005, astro-ph/0511580.

[37]  A. Cooray Halo model at its best: constraints on conditional luminosity functions from measured galaxy statistics , 2005, astro-ph/0509033.

[38]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[39]  J. Tinker,et al.  On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.

[40]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[41]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[42]  J. Brinkmann,et al.  SDSS galaxy bias from halo mass-bias relation and its cosmological implications , 2004, astro-ph/0406594.

[43]  R. Mandelbaum,et al.  Galaxy-galaxy lensing : dissipationless simulations versus the halo model , 2004, astro-ph/0410711.

[44]  R. Wechsler,et al.  Modeling Galaxy-mass Correlations in Dissipationless Simulations , 2022 .

[45]  P. Norberg,et al.  Probing dark matter haloes with satellite kinematics , 2004, astro-ph/0404033.

[46]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[47]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[48]  Zheng Zheng Interpreting the Observed Clustering of Red Galaxies at z ~ 3 , 2003, astro-ph/0307030.

[49]  H. Hoekstra,et al.  Properties of Galaxy Dark Matter Halos from Weak Lensing , 2003, astro-ph/0310756.

[50]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[51]  Michael A. Specian,et al.  Submitted to The Astrophysical Journal (Letters) Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASS–TO–LIGHT RATIOS OF 2DF GALAXIES , 2003 .

[52]  J. Brinkmann,et al.  Observing the Dark Matter Density Profile of Isolated Galaxies , 2003, astro-ph/0301360.

[53]  H. Mo,et al.  Towards cosmological concordance on galactic scales , 2003, astro-ph/0301104.

[54]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[55]  H. Mo,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[56]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[57]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[58]  U. Seljak,et al.  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[59]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[60]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[61]  R. Nichol,et al.  Galaxy Mass and Luminosity Scaling Laws Determined by Weak Gravitational Lensing , 2001, astro-ph/0108013.

[62]  et al,et al.  Galaxy Clustering in Early SDSS Redshift Data , 2001, astro-ph/0106476.

[63]  Linear and non-linear contributions to pairwise peculiar velocities , 2000, astro-ph/0009167.

[64]  G. Luppino,et al.  Galaxy Halo Masses from Galaxy-Galaxy Lensing , 2000, astro-ph/0008504.

[65]  U. Seljak,et al.  Galaxy-Galaxy Lensing Predictions from the Semi-Analytic Galaxy Formation Models , 2000, astro-ph/0007067.

[66]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[67]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[68]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[69]  Candace Oaxaca WrightTereasa G. Brainerd,et al.  Gravitational Lensing by NFW Halos , 1999, astro-ph/9908213.

[70]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[71]  R. Blandford,et al.  Weak Gravitational Lensing by Galaxies , 1996 .

[72]  R. Blandford,et al.  Weak Gravitational Lensing by Galaxies , 1995, astro-ph/9503073.

[73]  J. Miralda-Escudé Gravitational lensing by clusters of galaxies - Constraining the mass distribution , 1991 .

[74]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[75]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .