Homeostatic thymus hormone stimulates corticosterone secretion in a dose- and age-dependent manner in rats.

There is increasing evidence that the neuroendocrine system is responsive to hormonal signals generated by the immune systems. In particular, interleukin-1 and thymosin have been shown to stimulate the pituitary-adrenal axis in young animals. We report here that homeostatic thymus hormone (HTH), a well-characterized thymic preparation, increases plasma levels of corticosterone but not prolactin (PRL) in a dose- and age-dependent manner in male Sprague-Dawley rats. Young (3 months) and old (26 months) conscious, free-moving animals carrying an indwelling atrial cannula received the substances to be tested via the cannulas. Plasma samples were taken every 30 min for 5 h and hormones were measured by radioimmunoassay. HTH doses of 1 and 8 mg/kg body weight injected into young rats elicited a 7.8- and 12.8-fold increase in plasma corticosterone, respectively, as compared to saline-injected controls. The HTH-induced peak corticosterone levels were reached within 1.5 and 2.5 h after HTH injection. Plasma PRL was not affected by HTH in either age group. A single dose of 8 mg HTH/kg body weight induced a smaller corticosterone response in old than in young rats, although the time course of the response was similar in both age groups. The present results further suggest the existence of a lymphoid-neuroendocrine axis in young animals. The data also suggest that a disruption in immune-endocrine integration occurs during aging in rats.