Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | L. Ho | J. Conway | H. Falcke | T. Lauer | G. Desvignes | J. Carlstrom | D. James | P. Koch | C. Kramer | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | Sang-Sung Lee | M. Kino | S. Trippe | Jongho Park | D. Byun | M. Gurwell | Jae-Young Kim | C. Gammie | N. Patel | M. Inoue | F. Schloerb | E. Fomalont | Jongsoo Kim | R. Narayan | A. Chael | Michael D. Johnson | J. Wardle | S. Chatterjee | M. Kramer | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | R. Lu | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | M. Sasada | L. Shao | A. Marscher | S. Jorstad | José L. Gómez | U. Pen | J. Mao | I. Bemmel | D. Bintley | D. Ward-Thompson | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | D. Broguière | T. Bronzwaer | Chi-kwan Chan | Yongjun Chen | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | Roberto García | O. Gentaz | C. Goddi | M. Gu | K. Hada | Lei Huang | S. Issaoun | M. Janssen | Wu Jiang | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | Yan-Rong Li | Zhiyuan Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | S. Markoff | S. Matsushita | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | G. Narayanan | A. Noutsos | H. Okino | H. Olivares | F. Ozel | D. Palumbo | V. Piétu | A. PopStefanija | B. Prather | J. A. Preciado-López | V. Ramakrishnan | R. Rao | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | B. Ryan | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | H. Langevelde | D. V. Rossum | J. Wagner | N. Wex | R. Wharton | M. Wielgus | G. Wong | Qingwen Wu | Z. Younsi | F. Yuan | Ye-Fei Yuan | Shan-Shan Zhao | H. V. van Langevelde | M. De Laurentis | F. Özel | Zhiqiang Shen | I. V. van Bemmel | D. V. van Rossum | A. Jiménez-Rosales | D. Yoon | C. Muller | R. Lico | M. Laurentis | G. Musoke | E. Traianou | Jun Liu | Alejandro Mus Mejías | D. Broguiere | J. Gómez | Lijing Shao | R. García | A. Raymond | Qingwen Wu | Qingwen Wu | David Ball | Aleksandar PopStefanija | Alejandro Mus Mej'ias | the Eht Collaboration | Olivier Gentaz | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Arash Roshanineshat | Doosoo Yoon | M. Kramer | D. Hughes | Des Small | H. V. Langevelde

[1]  P. T. de Zeeuw,et al.  Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole , 2020, Astronomy & Astrophysics.

[2]  D. Psaltis,et al.  A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes , 2019, The Astrophysical Journal.

[3]  N. Yunes,et al.  Numerical black hole solutions in modified gravity theories: Spherical symmetry case , 2019, Physical Review D.

[4]  Jessica R. Lu,et al.  Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole , 2019, Science.

[5]  S. Teukolsky,et al.  Testing the No-Hair Theorem with GW150914. , 2019, Physical review letters.

[6]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[7]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019 .

[8]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[9]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[10]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[11]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[12]  B. C. Barish,et al.  Summary of Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1 , 2019, 1905.05565.

[13]  P. Ferreira Cosmological Tests of Gravity , 2019, Annual Review of Astronomy and Astrophysics.

[14]  P. T. de Zeeuw,et al.  Test of the Einstein Equivalence Principle near the Galactic Center Supermassive Black Hole. , 2019, Physical review letters.

[15]  E. Barausse,et al.  Constraints on Hořava gravity from binary black hole observations , 2018, Physical Review D.

[16]  D. Psaltis Testing general relativity with the Event Horizon Telescope , 2018, General Relativity and Gravitation.

[17]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[18]  C. Herdeiro,et al.  Shadows and strong gravitational lensing: a brief review , 2018, General Relativity and Gravitation.

[19]  E. Berti,et al.  Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling. , 2017, Physical review letters.

[20]  D. Doneva,et al.  New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories. , 2017, Physical review letters.

[21]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[22]  L. Rezzolla,et al.  General parametrization of axisymmetric black holes in metric theories of gravity , 2016, 1602.02378.

[23]  E. Barausse,et al.  Slowly rotating black holes in Einstein-æther theory , 2015, 1512.05894.

[24]  N. Yunes,et al.  Extremal black holes in dynamical Chern–Simons gravity , 2015, 1512.05453.

[25]  Michael D. Johnson,et al.  Testing General Relativity with the Shadow Size of Sgr A(*). , 2015, Physical review letters.

[26]  V. Cardoso,et al.  Cosmic censorship and parametrized spinning black-hole geometries , 2015, 1511.00690.

[27]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[28]  C. Skordis,et al.  LINKING TESTS OF GRAVITY ON ALL SCALES: FROM THE STRONG-FIELD REGIME TO COSMOLOGY , 2014, 1412.3455.

[29]  Daniel P. Marrone,et al.  A GENERAL RELATIVISTIC NULL HYPOTHESIS TEST WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF THE BLACK HOLE SHADOW IN Sgr A* , 2014, 1411.1454.

[30]  L. Rezzolla,et al.  New parametrization for spherically symmetric black holes in metric theories of gravity , 2014, 1407.3086.

[31]  N. Yunes,et al.  Slowly-Rotating Black Holes in Einstein-Dilaton-Gauss-Bonnet Gravity: Quadratic Order in Spin Solutions , 2014, 1405.2133.

[32]  V. Cardoso,et al.  On generic parametrizations of spinning black-hole geometries , 2014, 1401.0528.

[33]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[34]  T. Johannsen PHOTON RINGS AROUND KERR AND KERR-LIKE BLACK HOLES , 2013, 1501.02814.

[35]  T. Johannsen Regular Black Hole Metric with Three Constants of Motion , 2013, 1501.02809.

[36]  E. Barausse,et al.  Black holes in Lorentz-violating gravity theories , 2013, 1307.3359.

[37]  T. Johannsen Systematic Study of Event Horizons and Pathologies of Parametrically Deformed Kerr Spacetimes , 2013, 1304.7786.

[38]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[39]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[40]  Takahiro Tanaka,et al.  Slowly Rotating Black Holes in Dynamical Chern-Simons Gravity: Deformation Quadratic in the Spin , 2012, 1206.6130.

[41]  T. Sotiriou,et al.  Black holes in scalar-tensor gravity. , 2011, Physical review letters.

[42]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[43]  J. Gair,et al.  Approximate Waveforms for Extreme-Mass-Ratio Inspirals in Modified Gravity Spacetimes , 2011, 1106.6313.

[44]  T. Johannsen,et al.  Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem , 2011, 1105.3191.

[45]  T. Jacobson,et al.  Black holes in Einstein-aether and Hořava-Lifshitz gravity , 2011, 1104.2889.

[46]  N. Yunes,et al.  Bumpy black holes in alternative theories of gravity , 2011, 1102.3706.

[47]  N. Yunes,et al.  Nonspinning black holes in alternative theories of gravity , 2011, 1101.2921.

[48]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[49]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES , 2010, 1005.1931.

[50]  Katherine Freese,et al.  Apparent shape of super-spinning black holes , 2008, 0812.1328.

[51]  D. Psaltis,et al.  Kerr black holes are not unique to general relativity. , 2007, Physical review letters.

[52]  D. Psaltis Testing general metric theories of gravity with bursting neutron stars , 2007, 0704.2426.

[53]  Richard H. Price,et al.  Black Holes , 1997 .

[54]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[55]  Edward Teo Spherical Photon Orbits Around a Kerr Black Hole , 2003 .

[56]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[57]  T. D. Matteo,et al.  X-RAY IMAGES OF HOT ACCRETION FLOWS , 2000, astro-ph/0004267.

[58]  R. Narayan,et al.  Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows , 2000, astro-ph/0004195.

[59]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[60]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[61]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .