Adaptation of performed ballistic motion

Adaptation of ballistic motion demands a technique that can make required adjustments in anticipation of flight periods when only some physically consistent changes are possible. This article describes a numerical procedure that adjusts a physically consistent motion to fulfill new adaptation requirements expressed in kinematic and dynamic constraints. This iterative procedure refines the original motion with a sequence of minimal adjustments, implicitly favoring motions that are similar to the original performance, and transforming any input motion, including those that are difficult to characterize with an objective function. In total, over twenty adaptations were generated from two recorded performances, a run and a jump, by varying foot placement, restricting muscle use, adding new environment constraints, and changing the length and mass of specific limbs.

[1]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Philip E. Gill,et al.  Practical optimization , 1981 .

[3]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[4]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[5]  David A. Winter,et al.  Biomechanics and Motor Control of Human Movement , 1990 .

[6]  M G Pandy,et al.  A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. , 1992, Journal of biomechanical engineering.

[7]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[8]  P. Toint,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[9]  J. Demmel,et al.  Improved Error Bounds for Underdetermined System Solvers , 1993, SIAM J. Matrix Anal. Appl..

[10]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[11]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[12]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[13]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[14]  Zicheng Liu,et al.  Efficient animation techniques balancing both user control and physical realism , 1996 .

[15]  David Baraff,et al.  Linear-time dynamics using Lagrange multipliers , 1996, SIGGRAPH.

[16]  Michael F. Cohen,et al.  Efficient generation of motion transitions using spacetime constraints , 1996, SIGGRAPH.

[17]  Michael Gleicher,et al.  Motion editing with spacetime constraints , 1997, SI3D.

[18]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[19]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[20]  Jessica K. Hodgins,et al.  Tracking and Modifying Upper-body Human Motion Data with Dynamic Simulation , 1999, Computer Animation and Simulation.

[21]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[22]  Sung Yong Shin,et al.  A hierarchical approach to interactive motion editing for human-like figures , 1999, SIGGRAPH.

[23]  Marcus G. Pandy,et al.  Dynamic Simulation of Human Movement Using Large-Scale Models of the Body , 2000, Phonetica.

[24]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[25]  Gerald J. Sussman,et al.  Structure and interpretation of classical mechanics , 2001 .

[26]  Harry Shum,et al.  Motion texture: a two-level statistical model for character motion synthesis , 2002, ACM Trans. Graph..

[27]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[28]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[29]  Dinesh K. Pai,et al.  DyRT: dynamic response textures for real time deformation simulation with graphics hardware , 2002, SIGGRAPH.

[30]  Hyeong-Seok Ko,et al.  Spacetime sweeping: an interactive dynamic constraints solver , 2002, Proceedings of Computer Animation 2002 (CA 2002).

[31]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[32]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[33]  J. Marsden,et al.  Structure-preserving Model Reduction of Mechanical Systems , 2000 .

[34]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[35]  Frédéric H. Pighin,et al.  Unsupervised learning for speech motion editing , 2003, SCA '03.

[36]  Hyun Joon Shin,et al.  Physical touch-up of human motions , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[37]  Katsu Yamane,et al.  Dynamics Filter - concept and implementation of online motion Generator for human figures , 2000, IEEE Trans. Robotics Autom..

[38]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[39]  C. Karen Liu,et al.  Momentum-based parameterization of dynamic character motion , 2004, SCA '04.

[40]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[41]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[42]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[43]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..