Influence of operating conditions on friction and temperature characteristics of a wet clutch engagement

To optimise the gear change in automatic transmissions, more knowledge is needed of the engagement behaviour of wet clutches. A factorial design investigation of the engagement of a wet clutch has been carried out. The friction and temperature characteristics have been studied. The experiments were carried out in an apparatus that can vary sliding velocity, drive torque, inertia, force rate, and lubricant flow. The results show how these parameters affect the response data: engagement time, developed energy, temperature rise, maximum torque, maximum power, static friction, dynamic friction, and initial friction. There are interaction effects between some of the input parameters, but they are relatively small. The friction coefficient varies over time but is independent of the input parameters, except for dynamic friction, which decreases with increasing sliding velocity, drive torque, and inertia. The temperature rise was found to be proportional to developed energy and both these were most affected by sliding velocity. The drive torque and force rate have the greatest effect on the engagement time.