Performance-oriented quasi-LPV modeling of nonlinear systems

[1]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[2]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[3]  Miguel Bernal,et al.  A membership-function-dependent approach for stability analysis and controller synthesis of Takagi-Sugeno models , 2009, Fuzzy Sets Syst..

[4]  Damiano Rotondo,et al.  Robust state-feedback control of uncertain LPV systems: An LMI-based approach , 2014, J. Frankl. Inst..

[5]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[6]  Minyue Fu,et al.  ℒ︁2‐Gain analysis and control of uncertain nonlinear systems with bounded disturbance inputs , 2008 .

[7]  Ali Jadbabaie,et al.  Nonlinear H∞ control: an enhanced quasi-LPV approach , 1999 .

[8]  Antonio Sala,et al.  On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems , 2009, Annu. Rev. Control..

[9]  Antonio Sala,et al.  Choosing a Takagi-Sugeno model for improved performance , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[10]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[11]  S. Pettersson,et al.  Linear parameter-varying descriptions of nonlinear systems , 2004, Proceedings of the 2004 American Control Conference.

[12]  Yong Wang,et al.  T-S-Fuzzy-Model-Based Approximation and Controller Design for General Nonlinear Systems. , 2012, IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society.

[13]  Thierry-Marie Guerra,et al.  Generalized Nonquadratic Stability of Continuous-Time Takagi–Sugeno Models , 2010, IEEE Transactions on Fuzzy Systems.

[14]  M. D. Bronshtein Smoothness of roots of polynomials depending on parameters , 1979 .

[15]  A. Trofino,et al.  LMI stability conditions for uncertain rational nonlinear systems , 2014 .

[16]  Pedro Luis Dias Peres,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..

[17]  Antonio Sala,et al.  Optimisation of transient and ultimate inescapable sets with polynomial boundaries for nonlinear systems , 2016, Autom..

[18]  Fernando D. Bianchi,et al.  Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models , 2005 .

[19]  Thierry-Marie Guerra,et al.  LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form , 2004, Autom..

[20]  Graziano Chesi,et al.  Estimating the domain of attraction for non-polynomial systems via LMI optimizations , 2009, Autom..

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Yun Huang,et al.  Nonlinear optimal control: an enhanced quasi-LPV approach , 1999 .

[23]  Antonio Sala,et al.  Computer control under time-varying sampling period: An LMI gridding approach , 2005, Autom..

[24]  Antonio Sala,et al.  Cancellation-Based Nonquadratic Controller Design for Nonlinear Systems via Takagi–Sugeno Models , 2017, IEEE Transactions on Cybernetics.

[25]  Jeff S. Shamma,et al.  A Linear Parameter Varying Approach to Gain Scheduled Missile Autopilot Design , 1992 .

[26]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[27]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .

[28]  Thierry-Marie Guerra,et al.  Observer design for Takagi-Sugeno descriptor models: An LMI approach , 2015, Autom..

[29]  Damiano Rotondo,et al.  Automated generation and comparison of Takagi-Sugeno and polytopic quasi-LPV models , 2015, Fuzzy Sets Syst..

[30]  Antonio Sala,et al.  Subspace-Based Takagi–Sugeno Modeling for Improved LMI Performance , 2017, IEEE Transactions on Fuzzy Systems.

[31]  Dong Hwan Lee,et al.  Relaxed LMI Conditions for Local Stability and Local Stabilization of Continuous-Time Takagi–Sugeno Fuzzy Systems , 2014, IEEE Transactions on Cybernetics.

[32]  Paul M.J. Van den Hof,et al.  Prediction-Error Identification of LPV Systems: Present and Beyond , 2012 .

[33]  Fen Wu,et al.  Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions , 2005, Proceedings of the 2005, American Control Conference, 2005..

[34]  Minyue Fu,et al.  Robust analysis and control for a class of uncertain nonlinear discrete-time systems , 2004, Syst. Control. Lett..

[35]  Masayuki Sato,et al.  Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems , 2013, Autom..

[36]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[37]  Antonio Sala,et al.  Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach , 2009, IEEE Transactions on Fuzzy Systems.

[38]  Antonio Sala,et al.  Relaxed Stability and Performance LMI Conditions for Takagi--Sugeno Fuzzy Systems With Polynomial Constraints on Membership Function Shapes , 2008, IEEE Transactions on Fuzzy Systems.

[39]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[40]  George W. Irwin,et al.  Sampled-data gain scheduling of continuous LTV plants , 2009, Autom..

[41]  Herbert Werner,et al.  PCA-Based Parameter Set Mappings for LPV Models With Fewer Parameters and Less Overbounding , 2008, IEEE Transactions on Control Systems Technology.

[42]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[43]  Edoardo Mosca,et al.  Constrained predictive control of nonlinear plants via polytopic linear system embedding , 2000 .

[44]  Jan Swevers,et al.  Gain-scheduled H 2 and H ∞ control of discrete-time polytopic time-varying systems , 2010 .