Swarm Intelligence in Data Mining

Devoted to novel optical measurement techniques that are applied both in industry and life sciences, this book contributes a fresh perspective on the development of modern optical sensors. These sensors are often essential in detecting and controlling parameters that are important for both industrial and biomedical applications. The book provides easy access for beginners wishing to gain familiarity with the innovations of modern optics.

[1]  Lizhi Peng,et al.  Programming Hierarchical TS Fuzzy Systems , 2006, 2006 International Symposium on Evolving Fuzzy Systems.

[2]  L. Dill,et al.  The three-dimensional structure of airborne bird flocks , 1978, Behavioral Ecology and Sociobiology.

[3]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[4]  Tiago Ferra de Sousa,et al.  Particle Swarm based Data Mining Algorithms for classification tasks , 2004, Parallel Comput..

[5]  Vijay V. Raghavan,et al.  A clustering strategy based on a formalism of the reproductive process in natural systems , 1979, SIGIR '79.

[6]  Mouloud Koudil,et al.  AntPart: an algorithm for the unsupervised classification problem using ants , 2006, Appl. Math. Comput..

[7]  Christian Blum,et al.  Ant colony optimization: Introduction and recent trends , 2005 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Ching-Yi Chen,et al.  Alternative KPSO-Clustering Algorithm , 2005 .

[10]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[11]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[12]  Marco Dorigo,et al.  Ant algorithms and stigmergy , 2000, Future Gener. Comput. Syst..

[13]  Cheng-Fa Tsai,et al.  ACODF: a novel data clustering approach for data mining in large databases , 2004, J. Syst. Softw..

[14]  Luiz Eduardo Soares de Oliveira,et al.  Improving cascading classifiers with particle swarm optimization , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[15]  János Abonyi,et al.  Computational Intelligence in Data Mining , 2005, Informatica.

[16]  Peter J. Bentley,et al.  Particle swarm optimization recommender system , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[17]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[18]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[19]  Xiaohui Cui,et al.  Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm , 2005 .

[20]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[21]  J. Kennedy Thinking is Social , 1998 .

[22]  Russell C. Eberhart,et al.  Recent advances in particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[23]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[24]  M. Newman,et al.  Epidemics and percolation in small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Baldo Faieta,et al.  Diversity and adaptation in populations of clustering ants , 1994 .

[26]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Sung-Shun Weng,et al.  Mining time series data for segmentation by using Ant Colony Optimization , 2006, Eur. J. Oper. Res..

[28]  F Jasch,et al.  Trapping of random walks on small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  James Kennedy,et al.  The Behavior of Particles , 1998, Evolutionary Programming.

[30]  Marco Dorigo,et al.  Ant-Based Clustering and Topographic Mapping , 2006, Artificial Life.

[31]  Jean-Louis Deneubourg,et al.  The dynamics of collective sorting robot-like ants and ant-like robots , 1991 .

[32]  R. J. Kuo,et al.  Application of ant K-means on clustering analysis , 2005 .

[33]  Yuhui Shi,et al.  Co-evolutionary particle swarm optimization to solve min-max problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[34]  Ajith Abraham,et al.  Web usage mining using artificial ant colony clustering and linear genetic programming , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[35]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[36]  J. Kennedy Minds and Cultures: Particle Swarm Implications , 1997 .

[37]  Pedro Pina,et al.  Self-Organized Data and Image Retrieval as a Consequence of Inter-Dynamic Synergistic Relationships in Artificial Ant Colonies , 2002, HIS.

[38]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[39]  Gareth Jones,et al.  Non-hierarchic document clustering using a genetic algorithm , 1995, Information Research.

[40]  Yuehui Chen,et al.  Hybrid-Learning Methods for Stock Index Modeling , 2006 .

[41]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[42]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[43]  B L Partridge,et al.  The structure and function of fish schools. , 1982, Scientific American.

[44]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[45]  Ashraf M. Abdelbar,et al.  Applying Co-Evolutionary Particle Swam Optimization to the Egyptian Board Game Seega , 2003 .

[46]  Jan Paredis,et al.  Steps towards Coevolutionary Classification Neural Networks , 1994 .

[47]  Tiago Ferra de Sousa,et al.  Swarm optimisation as a new tool for data mining , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[48]  R. R. Krausz Living in Groups , 2013 .

[49]  Vittorio Loreto,et al.  Agreement dynamics on small-world networks , 2006, cond-mat/0603205.

[50]  Mahamed G. H. Omran Particle swarm optimization methods for pattern recognition and image processing , 2006 .

[51]  T. Pitcher,et al.  The sensory basis of fish schools: Relative roles of lateral line and vision , 1980, Journal of comparative physiology.

[52]  Pj Bentley,et al.  Learning User Prefernces Using Evolution , 2002 .

[53]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[54]  M. Duran Toksari,et al.  Ant colony optimization for finding the global minimum , 2006, Appl. Math. Comput..

[55]  M. Newman,et al.  Percolation and epidemics in a two-dimensional small world. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Bo Yang,et al.  Hybrid Neurocomputing for Breast Cancer Detection , 2005, WSTST.

[57]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[58]  George Karypis,et al.  Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering , 2004, Machine Learning.

[59]  Andries Petrus Engelbrecht,et al.  Particle Swarm Optimization for Pattern Recognition and Image Processing , 2006, Swarm Intelligence in Data Mining.

[60]  Michael N. Vrahatis,et al.  Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials , 2005, ArXiv.

[61]  MATT SETTLES,et al.  Neural Network Learning using Particle Swarm Optimizers , 2002 .

[62]  G. Flake The Computational Beauty of Nature , 1998 .

[63]  Peter J. Bentley,et al.  Learning User Preferences using Evolution. , 2004 .

[64]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[65]  Bhaskar D. Kulkarni,et al.  An ant colony classifier system: application to some process engineering problems , 2004, Comput. Chem. Eng..

[66]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[67]  Vijay V. Raghavan,et al.  A clustering strategy based on a formalism of the reproductive process in natural systems , 1979, SIGIR 1979.

[68]  Leandro dos Santos Coelho,et al.  Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[69]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[70]  Andries P. Engelbrecht,et al.  Image Classification using Particle Swarm Optimization , 2002, SEAL.