Some Reverse Degree-Based Topological Indices and Polynomials of Dendrimers

Topological indices collect information from the graph of molecule and help to predict properties of the underlying molecule. Zagreb indices are among the most studied topological indices due to their applications in chemistry. In this paper, we compute first and second reverse Zagreb indices, reverse hyper-Zagreb indices and their polynomials of Prophyrin, Propyl ether imine, Zinc Porphyrin and Poly (ethylene amido amine) dendrimers.

[1]  On the harmonic index and harmonic polynomial of Caterpillars with diameter four , 2015 .

[2]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[3]  Lane H. Clark,et al.  On the General Randic Index for Certain Families of Trees , 1999, Ars Comb..

[4]  Wei Gao,et al.  On Certain Topological Indices of Boron Triangular Nanotubes , 2017 .

[5]  Xueliang Li,et al.  Sharp Bounds for the General Randi c Index , 2003 .

[6]  V. Kulli Reverse Zagreb and Reverse Hyper-Zagreb Indices and their Polynomials of Rhombus Silicate Networks , 2018 .

[7]  I. Gutman,et al.  Multiplicative Versions of First Zagreb Index , 2012 .

[8]  M. Randic Characterization of molecular branching , 1975 .

[9]  A. Hamzeh,et al.  Zagreb Indices , 2020, New Frontiers in Nanochemistry.

[10]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[11]  A. Flood,et al.  Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals. , 2014, Chemical communications.

[12]  M. Karelson,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies. , 1996, Chemical reviews.

[13]  E. Buhleier,et al.  "Cascade"- and "Nonskid-Chain-like" Syntheses of Molecular Cavity Topologies , 1978 .

[14]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[15]  Shin Min Kang,et al.  On Eccentricity-Based Topological Indices and Polynomials of Phosphorus-Containing Dendrimers , 2018, Symmetry.

[16]  Emeric Deutsch,et al.  M-Polynomial and Degree-Based Topological Indices , 2014, 1407.1592.

[17]  Y. Bashir,et al.  On Forgotten Topological Indices of Some Dendrimers Structure , 2017, Molecules.

[18]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[19]  Haruo Hosoya,et al.  On some counting polynomials in chemistry , 1988, Discret. Appl. Math..

[20]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[21]  Ali Ahmad,et al.  On Zagreb indices, Zagreb polynomials of some nanostar dendrimers , 2016, Appl. Math. Comput..

[22]  G. Fath-Tabar ZAGREB POLYNOMIAL AND PI INDICES OF SOME NANO STRUCTURES , 2009 .

[23]  Jianxiu Hao,et al.  Theorems about Zagreb Indices and Modified Zagreb Indices , 2011 .

[25]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[26]  Wei Gao,et al.  M-Polynomials and Degree-Based Topological Indices of the Crystallographic Structure of Molecules , 2018, Biomolecules.

[27]  Ante Graovac,et al.  Computing fifth geometric-arithmetic index for nanostar dendrimers , 2011 .

[28]  Wei Gao,et al.  On Eccentricity-Based Topological Indices Study of a Class of Porphyrin-Cored Dendrimers , 2018, Biomolecules.

[29]  Shin Min Kang,et al.  M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes , 2016, Symmetry.

[30]  Shin Min Kang,et al.  M-Polynomial and Related Topological Indices of Nanostar Dendrimers , 2016, Symmetry.

[31]  M. J. Nikmehr,et al.  Study of Dendrimers by Topological Indices , 2017 .

[32]  Wei Gao,et al.  Topological Indices of the Line Graph of Subdivision Graph of Complete Bipartite Graphs , 2017 .

[33]  B. Basavanagoud,et al.  New Upper Bounds for the First Zagreb Index , 2015 .

[34]  Ivan Gutman An Exceptional Property of First Zagreb Index , 2014 .

[35]  M. Karelson Molecular descriptors in QSAR/QSPR , 2000 .

[36]  I. Gutman,et al.  Three New/Old Vertex-Degree-Based Topological Indices , 2014 .

[37]  N. Trinajstic,et al.  On reformulated Zagreb indices , 2004, Molecular Diversity.

[38]  Ali Reza Ashrafi,et al.  PI, Szeged and edge Szeged indices of an infinite family of nanostar dendrimers , 2008 .

[39]  A. Madanshekaf,et al.  Computing two topological indices of nanostars dendrimer , 2010 .

[40]  Wei Gao,et al.  Nano properties analysis via fourth multiplicative ABC indicator calculating , 2017, Arabian Journal of Chemistry.

[41]  M. A. Zahid,et al.  Calculating the Degree-based Topological Indices of Dendrimers , 2018, Open Chemistry.

[42]  V. R. Kulli • MULTIPLICATIVE HYPER-ZAGREB INDICES AND COINDICES OF GRAPHS: COMPUTING THESE INDICES OF SOME NANOSTRUCTURES , 2016 .

[43]  Yongtang Shi,et al.  ON MOLECULAR GRAPHS WITH SMALLEST AND GREATEST ZEROTH-ORDER GENERAL RANDIĆ INDEX∗ , 2022 .

[44]  Xiaodan Chen,et al.  Conjugated trees with minimum general Randic index , 2009, Discret. Appl. Math..

[45]  Shin Min Kang,et al.  On the Multiplicative Degree-Based Topological Indices of Silicon-Carbon Si2C3-I[p, q] and Si2C3-II[p, q] , 2018, Symmetry.

[46]  R. G. Denkewalter MACROMOLECULAR HIGHLY BRANCHED HOMOGENEOUS COMPOUND BASED ON LYSINE UNITs ( 75 ) Inventors : , 2017 .

[47]  Y. Bashir,et al.  Three New/Old Vertex-Degree-Based Topological Indices ofSome Dendrimers Structure , 2017 .

[48]  Muhammad Kamran Siddiqui,et al.  Study of biological networks using graph theory , 2017, Saudi journal of biological sciences.

[49]  Gholam Hassan Shirdel,et al.  THE HYPER-ZAGREB INDEX OF GRAPH OPERATIONS , 2013 .