A class of optimal ternary cyclic codes and their duals

[1]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[2]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[3]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[4]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[5]  Tor Helleseth,et al.  Ternary m-sequences with three-valued cross-correlation function: New decimations of Welch and Niho type , 2001, IEEE Trans. Inf. Theory.

[6]  Bernhard Schmidt,et al.  All Two-Weight Irreducible Cyclic Codes? , 2002 .

[7]  V. Pless,et al.  Fundamentals of Error-Correcting Codes: Covering radius and cosets , 2003 .

[8]  Cunsheng Ding,et al.  A coding theory construction of new systematic authentication codes , 2005, Theor. Comput. Sci..

[9]  Cunsheng Ding,et al.  Linear codes from perfect nonlinear mappings and their secret sharing schemes , 2005, IEEE Transactions on Information Theory.

[10]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[11]  Torleiv Kløve,et al.  Codes for Error Detection , 2007, Series on Coding Theory and Cryptology.

[12]  Keqin Feng,et al.  Value Distributions of Exponential Sums From Perfect Nonlinear Functions and Their Applications , 2007, IEEE Transactions on Information Theory.

[13]  Cunsheng Ding,et al.  Optimal Sets of Frequency Hopping Sequences From Linear Cyclic Codes , 2010, IEEE Transactions on Information Theory.

[14]  Yuan Zhou Introduction to Coding Theory , 2010 .

[15]  Lei Hu,et al.  A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions , 2010, Finite Fields Their Appl..

[16]  Tao Feng On cyclic codes of length $${2^{2^r}-1}$$ with two zeros whose dual codes have three weights , 2012, Des. Codes Cryptogr..

[17]  Cunsheng Ding,et al.  Hamming weights in irreducible cyclic codes , 2011, Discret. Math..

[18]  Cunsheng Ding,et al.  Optimal Ternary Cyclic Codes From Monomials , 2013, IEEE Transactions on Information Theory.

[19]  Cunsheng Ding,et al.  Cyclic Codes from Some Monomials and Trinomials , 2013, SIAM J. Discret. Math..

[20]  Cunsheng Ding,et al.  A q-polynomial approach to cyclic codes , 2013, Finite Fields Their Appl..

[21]  Jing Yang,et al.  Weight Distribution of a Class of Cyclic Codes With Arbitrary Number of Zeros , 2013, IEEE Transactions on Information Theory.

[22]  Jing Yang,et al.  Weight Distributions of a Class of Cyclic Codes with Arbitrary Number of Zeros II , 2014, ArXiv.

[23]  Cunsheng Ding,et al.  Optimal ternary cyclic codes with minimum distance four and five , 2013, Finite Fields Their Appl..

[24]  Cunsheng Ding,et al.  The Weight Distributions of Several Classes of Cyclic Codes From APN Monomials , 2013, IEEE Transactions on Information Theory.

[25]  Chengju Li,et al.  Weight distributions of cyclic codes with respect to pairwise coprime order elements , 2013, Finite Fields Their Appl..

[26]  Lei Hu,et al.  The weight distributions of two classes of p-ary cyclic codes , 2014, Finite Fields Their Appl..

[27]  Chengju Li,et al.  The minimum Hamming distances of irreducible cyclic codes , 2014, Finite Fields Their Appl..

[28]  Cunsheng Ding,et al.  A class of three-weight cyclic codes , 2013, Finite Fields Their Appl..

[29]  Liang Hua,et al.  A CLASS OF THREE-WEIGHT CYCLIC CODES , 2016 .