Dependence of intrinsic torque and momentum confinement on normalized gyroradius and collisionality in the DIII-D tokamak

The dependence of intrinsic torque and momentum confinement time on normalized gyroradius ( ρ * ) and collisionality ( ν * ) has been measured in the DIII-D tokamak. The intrinsic torque normalized to temperature is found to have ρ * and ν * dependencies of ρ * − 1.5 ± 0.8 and ν * 0.26 ± 0.04 . This dependence on ρ * is unexpectedly favorable (increasing as ρ * decreases). The choice of normalization is important, and the implications are discussed. The unexpected dependence on ρ * is found to be robust, despite some uncertainty in the choice of normalization. The dependence of momentum confinement on ρ * does not clearly demonstrate Bohm or gyro-Bohm like scaling, and a weaker dependence on ν * is found. The calculations required to use these dependencies to determine the intrinsic torque in future tokamaks such as ITER are presented, and the importance of the normalization is explained. Based on the currently available information, the intrinsic torque predicted for ITER is 33 N m , comparable to th...

[1]  R. S. Hemsworth,et al.  Overview of the design of the ITER heating neutral beam injectors , 2017 .

[2]  K. Burrell,et al.  High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal. , 2016, The Review of scientific instruments.

[3]  K. Burrell,et al.  Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D. , 2016, The Review of scientific instruments.

[4]  J. Rice Experimental observations of driven and intrinsic rotation in tokamak plasmas , 2016 .

[5]  J. Rice,et al.  Dimensionless size scaling of intrinsic rotation in DIII-D , 2015 .

[6]  C. Angioni,et al.  Neoclassical transport of heavy impurities with poloidally asymmetric density distribution in tokamaks , 2014 .

[7]  Access to high beta advanced inductive plasmas at low injected torque , 2013 .

[8]  F. Casson,et al.  Analytic formulae for centrifugal effects on turbulent transport of trace impurities in tokamak plasmas , 2012 .

[9]  K. Burrell,et al.  Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited). , 2012, The Review of scientific instruments.

[10]  T. Tala,et al.  Core momentum and particle transport studies in the ASDEX Upgrade tokamak , 2011 .

[11]  K. Burrell,et al.  Measurements of the deuterium ion toroidal rotation in the DIII-D tokamak and comparison to neoclassical theorya) , 2011 .

[12]  K. Burrell,et al.  Intrinsic rotation generation in ELM-free H-mode plasmas in the DIII-D tokamak—Experimental observationsa) , 2011 .

[13]  Yasuhiro Idomura,et al.  Consequences of profile shearing on toroidal momentum transport , 2011 .

[14]  A. M. Garofalo,et al.  Characterization of intrinsic rotation drive on DIII-D , 2011 .

[15]  J. Candy,et al.  Poloidally and radially resolved parallel D + velocity measurements in the DIII-D boundary and comparison to neoclassical computations , 2011 .

[16]  K. Burrell,et al.  Experimental investigation of the role of fluid turbulent stresses and edge plasma flows for intrinsic rotation generation in DIII-D H-mode plasmas. , 2011, Physical review letters.

[17]  J. Degrassie,et al.  Plasma flow due to a loss-cone distribution centred around the outboard edge in DIII-D , 2011 .

[18]  R. Bell,et al.  Mechanisms for generating toroidal rotation in tokamaks without external momentum input , 2010 .

[19]  R Betti,et al.  Resistive wall mode instability at intermediate plasma rotation. , 2010, Physical review letters.

[20]  K. Burrell,et al.  Intrinsic toroidal velocity near the edge of DIII-D H-mode plasmas , 2009 .

[21]  R. Budny,et al.  Advances in understanding the generation and evolution of the toroidal rotation profile on DIII-D , 2009 .

[22]  K-D Zastrow,et al.  Evidence of inward toroidal momentum convection in the JET tokamak. , 2009, Physical review letters.

[23]  I. T. Chapman,et al.  Modelling resistive wall modes in ITER with self-consistent inclusion of drift kinetic resonances , 2009 .

[24]  T. Petrie,et al.  Demonstration of ITER operational scenarios on DIII-D , 2008 .

[25]  R. Bell,et al.  Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment. , 2008, Physical review letters.

[26]  Douglas McCune,et al.  Predictive simulations of ITER including neutral beam driven toroidal rotation , 2008 .

[27]  T. Petrie,et al.  Influence of toroidal rotation on transport and stability in hybrid scenario plasmas in DIII-D , 2008 .

[28]  T. C. Luce,et al.  Application of dimensionless parameter scaling techniques to the design and interpretation of magnetic fusion experiments , 2008 .

[29]  R. Budny,et al.  Momentum confinement at low torque , 2007 .

[30]  B. P. Duval,et al.  Inter-machine comparison of intrinsic toroidal rotation in tokamaks , 2007 .

[31]  Go Matsunaga,et al.  Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas , 2007 .

[32]  A. Peeters,et al.  Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma. , 2007, Physical review letters.

[33]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[34]  C. C. Petty,et al.  Sizing up plasmas using dimensionless parametersa) , 2006 .

[35]  G. Staebler,et al.  Predicted toroidal rotation enhancement of fusion power production in ITER , 2006 .

[36]  K. McClements,et al.  Collective electric field effects on the confinement of fast ions in tokamaks , 2006 .

[37]  K. Burrell,et al.  Improved charge-coupled device detectors for high-speed, charge exchange spectroscopy studies on the DIII-D tokamak , 2004 .

[38]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[39]  F. Ryter,et al.  Density peaking, anomalous pinch, and collisionality in tokamak plasmas. , 2003, Physical Review Letters.

[40]  Participant Teams,et al.  ITER: burning plasma physics experiment , 2003 .

[41]  Jt Team,et al.  Studies of MHD behaviour in JT-60U , 2003 .

[42]  T. C. Luce,et al.  Scaling of heat transport with collisionality , 1999 .

[43]  L. L. Lao,et al.  Direct Observation of the Resistive Wall Mode in a Tokamak and Its Interaction with Plasma Rotation , 1999 .

[44]  K. H. Burrell,et al.  Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices , 1997 .

[45]  Experimental determination of non-diffusive toroidal momentum flux in JT-60U , 1994 .

[46]  R. Isler,et al.  An overview of charge-exchange spectroscopy as a plasma diagnostic , 1994 .

[47]  E. Solano,et al.  Analytical calculation of neutral transport and its effect on ions , 1992 .

[48]  F. Hinton,et al.  Neoclassical ion transport in rotating axisymmetric plasmas , 1985 .

[49]  R. J. Hawryluk,et al.  An Empirical Approach to Tokamak Transport , 1981 .