Effect of intrathecal serotonin on nociception in rats: influence of the pain test used

[1]  R. Murphy,et al.  Role of spinal serotonin1 receptor subtypes in thermally and mechanically elicited nociceptive reflexes , 2005, Psychopharmacology.

[2]  A. Cowan,et al.  Standardization of the rat paw formalin test for the evaluation of analgesics , 2005, Psychopharmacology.

[3]  R. F. Westbrook,et al.  The formalin test: scoring properties of the first and second phases of the pain response in rats , 1995, Pain.

[4]  A. Eschalier,et al.  A method to perform direct transcutaneous intrathecal injection in rats. , 1994, Journal of pharmacological and toxicological methods.

[5]  T. Coderre,et al.  The utility of excitatory amino acid (EAA) antagonists as analgesic agents. I. Comparison of the antinociceptive activity of various classes of EAA antagonists in mechanical, thermal and chemical nociceptive tests , 1994, Pain.

[6]  M. Millan Serotonin and pain: evidence that activation of 5-HT1A receptors does not elicit antinociception against noxious thermal, mechanical and chemical stimuli in mice , 1994, Pain.

[7]  J. Han,et al.  Serotonin receptor subtypes in spinal antinociception in the rat. , 1994, The Journal of pharmacology and experimental therapeutics.

[8]  P P Humphrey,et al.  International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). , 1994, Pharmacological reviews.

[9]  R. Melzack,et al.  The formalin test: a validation of the weighted-scores method of behavioural pain rating , 1993, Pain.

[10]  D. Hoyer,et al.  A proposed new nomenclature for 5-HT receptors. , 1993, Trends in pharmacological sciences.

[11]  A. Alhaider,et al.  Differential roles of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptor subtypes in modulating spinal nociceptive transmission in mice. , 1993, The Journal of pharmacology and experimental therapeutics.

[12]  M. Millan,et al.  5-HT1A receptors and the tail-flick response. IV. Spinally localized 5-HT1A receptors postsynaptic to serotoninergic neurones mediate spontaneous tail-flicks in the rat. , 1993, The Journal of pharmacology and experimental therapeutics.

[13]  P. Eide,et al.  The role of 5-HT1A and 5-HT1B receptors in spinal nociceptive transmission and in the modulation of NMDA induced behaviour. , 1992, Neuroreport.

[14]  J. Sawynok,et al.  Noradrenergic mediation of spinal antinociception by 5-hydroxytryptamine: characterization of receptor subtypes. , 1992, European journal of pharmacology.

[15]  A. Malmberg,et al.  Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. , 1992, The Journal of pharmacology and experimental therapeutics.

[16]  Patrick Onghena,et al.  Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies , 1992, Pain.

[17]  P. Eide,et al.  Different role of 5-HT1A and 5-HT2 receptors in spinal cord in the control of nociceptive responsiveness , 1991, Neuropharmacology.

[18]  J. Giordano Analgesic profile of centrally administered 2-methylserotonin against acute pain in rats. , 1991, European journal of pharmacology.

[19]  M. Brandão Serotonin and pain , 1991 .

[20]  T. Crisp,et al.  Analgesic effects of serotonin and receptor-selective serotonin agonists in the rat spinal cord. , 1991, General pharmacology.

[21]  K. Hole,et al.  The formalin test in mice: effect of formalin concentration , 1990, Pain.

[22]  E. Anderson,et al.  5-HT3 receptors modulate spinal nociceptive reflexes , 1990, Brain Research.

[23]  J. Green,et al.  Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. , 1989, The Journal of pharmacology and experimental therapeutics.

[24]  R. Inoki,et al.  Modified formalin test: characteristic biphasic pain response , 1989, Pain.

[25]  C. J. Schmidt,et al.  The putative 5-HT3 agonist phenylbiguanide induces carrier-mediated release of [3H]dopamine. , 1989, European journal of pharmacology.

[26]  E. Anderson,et al.  Reversal of the antinociceptive effects of intrathecally administered serotonin in the rat by a selective 5-HT3 receptor antagonist , 1988, Neuroscience Letters.

[27]  G. Gebhart,et al.  Mechanisms of effects of intrathecal serotonin on nociception and blood pressure in rats. , 1988, The Journal of pharmacology and experimental therapeutics.

[28]  A. Basbaum,et al.  A new microdissection technique for regional biochemical analysis of the rat spinal cord: serotonin, norepinephrine, dopamine and uric acid , 1987, Brain Research.

[29]  Kjell Hole,et al.  The formalin test in mice: dissociation between inflammatory and non-inflammatory pain , 1987, Pain.

[30]  M. Millan Multiple opioid systems and pain , 1986, Pain.

[31]  S. Hunskaar,et al.  Dissociation between antinociceptive and anti-inflammatory effects of acetylsalicylic acid and indomethacin in the formalin test , 1986, Pain.

[32]  H. Takagi,et al.  Antinociceptive effects of intrathecal opioids, noradrenaline and serotonin in rats: mechanical and thermal algesic tests , 1985, Brain Research.

[33]  A. Larson Distribution of CNS Sites Sensitive to Tryptamine and Serotonin in Pain Processing , 1985 .

[34]  P. Riederer,et al.  Neuropsychopharmacology of the Trace Amines , 1985, Humana Press.

[35]  G. Wilcox,et al.  Intrathecal serotonin in mice: analgesia and inhibition of a spinal action of substance P. , 1983, Life sciences.

[36]  T. Yaksh,et al.  Pharmacological antagonism of the antinociceptive effects of serotonin in the rat spinal cord. , 1983, European journal of pharmacology.

[37]  T. Yaksh,et al.  Spinal serotonin terminal system mediates antinociception. , 1979, The Journal of pharmacology and experimental therapeutics.

[38]  D. Dubuisson,et al.  The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats , 1977, Pain.