Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus

The compound eye of the butterfly Papilio xuthus is composed of three types of spectrally heterogeneous ommatidia. The ommatidia, which contain nine photoreceptor cells, R1–9, bear four (type I), three (type II), or two (type III) classes of spectral receptors in fixed combinations. The photoreceptors send their axons to the lamina, the first optic ganglion, where the R1–9 axons originating from a single ommatidium, together with some second‐order neurons, form a neuronal bundle, called a lamina cartridge. We investigated the axonal structure of photoreceptors in the lamina to determine whether the cartridge structure is different between the three ommatidial types. We first characterized a photoreceptor by measuring its spectral sensitivity and then injected Lucifer Yellow. We subsequently identified the type of ommatidium of the injected photoreceptor via histological sections. We further observed the axonal structure of the photoreceptor in the lamina by laser confocal microscopy. We found that the number and length of axon collaterals markedly differ between the spectral receptors. Those having the most extensive axon collaterals, which extend into six or more surrounding cartridges, are violet receptors (R1 and R2 of type II ommatidia). UV receptors (R1 or R2 of type I ommatidia) also send collaterals into two to four neighboring cartridges. Blue receptors (R1 or R2 of type I ommatidia, R1 and R2 of type III ommatidia) have short collaterals restricted to their own cartridges. We thus conclude that the neuronal circuit of the lamina cartridge differs between the three types of ommatidia. J. Comp. Neurol. 483:341–350, 2005. © 2005 Wiley‐Liss, Inc.

[1]  Richard H. White,et al.  The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization , 2003, Journal of Experimental Biology.

[2]  K. Arikawa Spectral organization of the eye of a butterfly, Papilio , 2003, Journal of Comparative Physiology A.

[3]  D. Stavenga,et al.  Coexpression of Two Visual Pigments in a Photoreceptor Causes an Abnormally Broad Spectral Sensitivity in the Eye of the Butterfly Papilio xuthus , 2003, The Journal of Neuroscience.

[4]  G. D. Bernard,et al.  Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet‐, blue‐, and green‐sensitive rhodopsin‐encoding mRNAs in the retina of Vanessa cardui , 2003, The Journal of comparative neurology.

[5]  D. Stavenga,et al.  Retinal regionalization and heterogeneity of butterfly eyes , 2001, Naturwissenschaften.

[6]  K. Arikawa,et al.  Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of two mRNAs encoding short-wavelength-absorbing opsins in the retina of the butterfly Papilio xuthus. , 2000, The Journal of experimental biology.

[7]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[8]  D. Stavenga,et al.  Tuning of Photoreceptor Spectral Sensitivities by Red and Yellow Pigments in the Butterfly Papilio xuthus , 1999 .

[9]  K. Arikawa,et al.  Colour vision of the foraging swallowtail butterfly papilio xuthus , 1999, The Journal of experimental biology.

[10]  D. Stavenga,et al.  An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio , 1999, Vision Research.

[11]  K. Arikawa,et al.  Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. , 1998, The Journal of experimental biology.

[12]  D. Stavenga,et al.  Random array of colour filters in the eyes of butterflies , 1997, The Journal of experimental biology.

[13]  B. Hämmerle,et al.  Organization of the lamina ganglionaris of the optic lobe of the butterfly Pararge aegeria (Linné) (Lepidoptera : Satyridae) , 1997 .

[14]  Innes C. Cuthill,et al.  Ultraviolet vision and mate choice in zebra finches , 1996, Nature.

[15]  J. Mollon,et al.  The spatial arrangement of cones in the primate fovea , 1992, Nature.

[16]  K. Arikawa,et al.  Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity , 1992, Journal of Comparative Physiology A.

[17]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[18]  K. Arikawa,et al.  Pentachromatic visual system in a butterfly , 1987, Naturwissenschaften.

[19]  W. Ribi The first optic ganglion of the bee , 1985, Cell and Tissue Research.

[20]  G. Horridge,et al.  Colour vision in butterflies , 1984, Journal of Comparative Physiology A.

[21]  I. Meinertzhagen,et al.  The lamina monopolar cells in the optic lobe of the dragonfly sympetrum , 1982 .

[22]  N. Franceschini,et al.  Distribution and properties of sex-specific photoreceptors in the flyMusca domestica , 1981, Journal of comparative physiology.

[23]  W. Kaiser,et al.  Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern , 1974, Journal of comparative physiology.

[24]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  W. Ribi Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. , 2004, Cell and Tissue Research.

[27]  R. Hardie Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica) , 2004, Cell and Tissue Research.

[28]  N. J. Marshall,et al.  Behavioural evidence for colour vision in stomatopod crustaceans , 2004, Journal of Comparative Physiology A.

[29]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[30]  K. Arikawa,et al.  Red receptors dominate the proximal tier of the retina in the butterfly Papilio xuthus , 2004, Journal of Comparative Physiology A.

[31]  Y. Tominaga,et al.  Identificaton of UV, green and red receptors, and their projection to lamina in the cabbage butterfly, Pieris rapae , 2004, Cell and Tissue Research.

[32]  Y. Tominaga,et al.  Synaptic organization in the lamina of the superposition eye of a skipper butterfly, Parnara guttata. , 1999, The Journal of comparative neurology.

[33]  A. D. Briscoe Molecular Diversity of Visual Pigments in the Butterfly Papilio glaucus , 1998, Naturwissenschaften.

[34]  Martin Egelhaaf,et al.  Neural Mechanisms of Visual Course Control in Insects , 1989 .

[35]  Dan-Eric Nilsson,et al.  Optics and Evolution of the Compound Eye , 1989 .

[36]  W. Ribi V. Structural and functional characterization of centrifugally arranged interneurones , 1984 .

[37]  N. Strausfeld The Golgi Method: Its Application to the Insect Nervous System and the Phenomenon of Stochastic Impregnation , 1980 .

[38]  N. Franceschini,et al.  Distribution and Properties of Sex-Specific Photoreceptors in the Fly Musca domestica , 2022 .