Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus
暂无分享,去创建一个
[1] Richard H. White,et al. The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization , 2003, Journal of Experimental Biology.
[2] K. Arikawa. Spectral organization of the eye of a butterfly, Papilio , 2003, Journal of Comparative Physiology A.
[3] D. Stavenga,et al. Coexpression of Two Visual Pigments in a Photoreceptor Causes an Abnormally Broad Spectral Sensitivity in the Eye of the Butterfly Papilio xuthus , 2003, The Journal of Neuroscience.
[4] G. D. Bernard,et al. Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet‐, blue‐, and green‐sensitive rhodopsin‐encoding mRNAs in the retina of Vanessa cardui , 2003, The Journal of comparative neurology.
[5] D. Stavenga,et al. Retinal regionalization and heterogeneity of butterfly eyes , 2001, Naturwissenschaften.
[6] K. Arikawa,et al. Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of two mRNAs encoding short-wavelength-absorbing opsins in the retina of the butterfly Papilio xuthus. , 2000, The Journal of experimental biology.
[7] David Williams,et al. The arrangement of the three cone classes in the living human eye , 1999, Nature.
[8] D. Stavenga,et al. Tuning of Photoreceptor Spectral Sensitivities by Red and Yellow Pigments in the Butterfly Papilio xuthus , 1999 .
[9] K. Arikawa,et al. Colour vision of the foraging swallowtail butterfly papilio xuthus , 1999, The Journal of experimental biology.
[10] D. Stavenga,et al. An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio , 1999, Vision Research.
[11] K. Arikawa,et al. Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. , 1998, The Journal of experimental biology.
[12] D. Stavenga,et al. Random array of colour filters in the eyes of butterflies , 1997, The Journal of experimental biology.
[13] B. Hämmerle,et al. Organization of the lamina ganglionaris of the optic lobe of the butterfly Pararge aegeria (Linné) (Lepidoptera : Satyridae) , 1997 .
[14] Innes C. Cuthill,et al. Ultraviolet vision and mate choice in zebra finches , 1996, Nature.
[15] J. Mollon,et al. The spatial arrangement of cones in the primate fovea , 1992, Nature.
[16] K. Arikawa,et al. Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity , 1992, Journal of Comparative Physiology A.
[17] N. Strausfeld,et al. Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.
[18] K. Arikawa,et al. Pentachromatic visual system in a butterfly , 1987, Naturwissenschaften.
[19] W. Ribi. The first optic ganglion of the bee , 1985, Cell and Tissue Research.
[20] G. Horridge,et al. Colour vision in butterflies , 1984, Journal of Comparative Physiology A.
[21] I. Meinertzhagen,et al. The lamina monopolar cells in the optic lobe of the dragonfly sympetrum , 1982 .
[22] N. Franceschini,et al. Distribution and properties of sex-specific photoreceptors in the flyMusca domestica , 1981, Journal of comparative physiology.
[23] W. Kaiser,et al. Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern , 1974, Journal of comparative physiology.
[24] N. Strausfeld. The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[25] N. Strausfeld,et al. The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[26] W. Ribi. Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. , 2004, Cell and Tissue Research.
[27] R. Hardie. Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica) , 2004, Cell and Tissue Research.
[28] N. J. Marshall,et al. Behavioural evidence for colour vision in stomatopod crustaceans , 2004, Journal of Comparative Physiology A.
[29] V. Braitenberg. Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.
[30] K. Arikawa,et al. Red receptors dominate the proximal tier of the retina in the butterfly Papilio xuthus , 2004, Journal of Comparative Physiology A.
[31] Y. Tominaga,et al. Identificaton of UV, green and red receptors, and their projection to lamina in the cabbage butterfly, Pieris rapae , 2004, Cell and Tissue Research.
[32] Y. Tominaga,et al. Synaptic organization in the lamina of the superposition eye of a skipper butterfly, Parnara guttata. , 1999, The Journal of comparative neurology.
[33] A. D. Briscoe. Molecular Diversity of Visual Pigments in the Butterfly Papilio glaucus , 1998, Naturwissenschaften.
[34] Martin Egelhaaf,et al. Neural Mechanisms of Visual Course Control in Insects , 1989 .
[35] Dan-Eric Nilsson,et al. Optics and Evolution of the Compound Eye , 1989 .
[36] W. Ribi. V. Structural and functional characterization of centrifugally arranged interneurones , 1984 .
[37] N. Strausfeld. The Golgi Method: Its Application to the Insect Nervous System and the Phenomenon of Stochastic Impregnation , 1980 .
[38] N. Franceschini,et al. Distribution and Properties of Sex-Specific Photoreceptors in the Fly Musca domestica , 2022 .