Solving Parabolic Moving Interface Problems with Dynamical Immersed Spaces on Unfitted Meshes: Fully Discrete Analysis

Immersed finite element (IFE) methods are a group of long-existing numerical methods for solving interface problems on unfitted meshes. A core argument of the methods is to avoid mesh regeneration procedure when solving moving interface problems. Despite the various applications in moving interface problems, a complete theoretical study on the convergence behavior is still missing. This research is devoted to close the gap between numerical experiments and theory. We present the first fully discrete analysis including the stability and optimal error estimates for a backward Euler IFE method for solving parabolic moving interface problems. Numerical results are also presented to validate the analysis.

[1]  Dominique Leguillon,et al.  Computation of singular solutions in elliptic problems and elasticity , 1987 .

[2]  Ruo Li,et al.  Level Set Calculations for Incompressible Two-Phase Flows on a Dynamically Adaptive Grid , 2007, J. Sci. Comput..

[3]  Fei Wang,et al.  High-order extended finite element methods for solving interface problems , 2016, Computer Methods in Applied Mechanics and Engineering.

[4]  Osborne Reynolds,et al.  Papers on Mechanical and Physical Subjects , 2009, Nature.

[5]  Feng Wang,et al.  A Rigorous Condition Number Estimate of an Immersed Finite Element Method , 2020, J. Sci. Comput..

[6]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[7]  Tao Lin,et al.  Optimal error bounds for partially penalized immersed finite element methods for parabolic interface problems , 2020, J. Comput. Appl. Math..

[8]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[9]  Weizhang Huang,et al.  Analysis Of Moving Mesh Partial Differential Equations With Spatial Smoothing , 1997 .

[10]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[11]  Pengtao Sun,et al.  Finite element analysis of an arbitrary Lagrangian–Eulerian method for Stokes/parabolic moving interface problem with jump coefficients , 2020 .

[12]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for the Stokes problem with a moving interface , 2019, J. Comput. Appl. Math..

[13]  Zhilin Li,et al.  Immersed interface methods for moving interface problems , 1997, Numerical Algorithms.

[14]  Paolo Zunino,et al.  Analysis of backward Euler/extended finite element discretization of parabolic problems with moving interfaces , 2013 .

[15]  J. Zou,et al.  Some New A Priori Estimates for Second-Order Elliptic and Parabolic Interface Problems , 2002 .

[16]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[17]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for Stokes interface problems , 2015 .

[18]  Haijun Wu,et al.  An unfitted $hp$-interface penalty finite element method for elliptic interface problems , 2010, 1007.2893.

[19]  R. Almgren Variational algorithms and pattern formation in dendritic solidification , 1993 .

[20]  Cheng Wang,et al.  A Fictitious Domain Method with Distributed Lagrange Multiplier for Parabolic Problems With Moving Interfaces , 2016, Journal of Scientific Computing.

[21]  Bo Li,et al.  Analysis of Island Dynamics in Epitaxial Growth of Thin Films , 2003, Multiscale Model. Simul..

[22]  Ruchi Guo,et al.  A group of immersed finite-element spaces for elliptic interface problems , 2016, 1612.00919.

[23]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[24]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[25]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[26]  Tao Lin,et al.  Partially penalized immersed finite element methods for parabolic interface problems , 2015, J. Comput. Appl. Math..

[27]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[28]  E. TezduyarT.,et al.  A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. II , 1992 .

[29]  Christine Bernardi,et al.  Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients , 2007 .

[30]  C. Horgan Eigenvalue estimates and the Trace Theorem , 1979 .

[31]  Xiaobing Feng,et al.  Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition , 2007, Math. Comput..

[32]  Xu Zhang,et al.  A Method of Lines Based on Immersed Finite Elements for Parabolic Moving Interface Problems , 2013 .

[33]  Slimane Adjerid,et al.  Error Estimates for an Immersed Finite Element Method for Second Order Hyperbolic Equations in Inhomogeneous Media , 2020, Journal of Scientific Computing.

[34]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[35]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[36]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[37]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[38]  A. Semtner,et al.  Introduction to “A Numerical Method for the Study of the Circulation of the World Ocean” , 1997 .

[39]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[40]  Xiaoming He,et al.  Immersed finite element methods for parabolic equations with moving interface , 2013 .

[41]  Tao Lin,et al.  A Higher Degree Immersed Finite Element Method Based on a Cauchy Extension for Elliptic Interface Problems , 2019, SIAM J. Numer. Anal..

[42]  Konstantinos Chrysafinos,et al.  Error Estimates for the Discontinuous Galerkin Methods for Parabolic Equations , 2006, SIAM J. Numer. Anal..

[43]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[44]  Thomas Richter,et al.  A second order time-stepping scheme for parabolic interface problems with moving interfaces , 2017 .

[45]  Shun Zhang,et al.  Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates , 2017, SIAM J. Numer. Anal..

[46]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[47]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[48]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[49]  Ruchi Guo,et al.  Recovering elastic inclusions by shape optimization methods with immersed finite elements , 2020, J. Comput. Phys..

[50]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[51]  Shun Zhang,et al.  Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations , 2011, SIAM J. Numer. Anal..

[52]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[53]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[54]  Frédéric Hecht,et al.  Error indicators for the mortar finite element discretization of the Laplace equation , 2002, Math. Comput..

[55]  Helmut Harbrecht,et al.  On the Numerical Solution of a Shape Optimization Problem for the Heat Equation , 2013, SIAM J. Sci. Comput..

[56]  Jie Liu,et al.  Simple and Efficient ALE Methods with Provable Temporal Accuracy up to Fifth Order for the Stokes Equations on Time Varying Domains , 2013, SIAM J. Numer. Anal..

[57]  Christoph Lehrenfeld,et al.  Analysis of a Nitsche XFEM-DG Discretization for a Class of Two-Phase Mass Transport Problems , 2013, SIAM J. Numer. Anal..

[58]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[59]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[60]  Hongyan Liu,et al.  Modeling and an immersed finite element method for an interface wave equation , 2018, Comput. Math. Appl..

[61]  Slimane Adjerid,et al.  An Immersed Discontinuous Galerkin Method for Acoustic Wave Propagation in Inhomogeneous Media , 2019, SIAM J. Sci. Comput..

[62]  Ruo Li,et al.  A multi-mesh adaptive finite element approximation to phase field models , 2009 .

[63]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[64]  Slimane Adjerid,et al.  An Enriched Immersed Finite Element Method for Interface Problems with Nonhomogeneous Jump Conditions , 2020, Computer Methods in Applied Mechanics and Engineering.