Nonlinear Oscillations of Hamiltonian PDEs

Finite Dimension.- Infinite Dimension.- A Tutorial in Nash-Moser Theory.- Application to the Nonlinear Wave Equation.- Forced Vibrations.

[1]  Pavel I. Plotnikov,et al.  Standing Waves on an Infinitely Deep Perfect Fluid Under Gravity , 2005 .

[2]  Sergiu Klainerman,et al.  Long-time behavior of solutions to nonlinear evolution equations , 1982 .

[3]  I. Ekeland,et al.  Convex Hamiltonian energy surfaces and their periodic trajectories , 1987 .

[4]  Luigi Chierchia,et al.  KAM Tori for 1D Nonlinear Wave Equations¶with Periodic Boundary Conditions , 1999, chao-dyn/9904036.

[5]  Sergiu Klainerman,et al.  Global existence for nonlinear wave equations , 1980 .

[6]  Jean-Michel Coron,et al.  Periodic solutions of a nonlinear wave equation without assumption of monotonicity , 1983 .

[7]  C. Conley,et al.  An index theory for periodic solutions of a Hamiltonian system , 1983 .

[8]  I. Ekeland,et al.  Symmetry breaking in Hamiltonian systems , 1987 .

[9]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[10]  D. C. Lewis,et al.  On the periodic motions near a given periodic motion of a dynamical system , 1934 .

[11]  Jean-Michel Coron,et al.  Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz , 1980 .

[12]  Vieri Benci,et al.  Critical point theorems for indefinite functionals , 1979 .

[13]  Yiming Long,et al.  Closed characteristics on compact convex hypersurfaces in $\R^{2n}$ , 2001 .

[14]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[15]  Hana Lovicarová Periodic solutions of a weakly nonlinear wave equation in one dimension , 1969 .

[16]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[17]  Charles Pugh,et al.  The C1 Closing Lemma, including Hamiltonians , 1983, Ergodic Theory and Dynamical Systems.

[18]  P. J. McKenna On solutions of a nonlinear wave question when the ratio of the period to the length of the interval is irrational , 1985 .

[19]  I. Ekeland,et al.  On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface , 1980 .

[20]  Jean Bourgain,et al.  QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS , 1998 .

[21]  Tosio Kato Perturbation theory for linear operators , 1966 .

[22]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[23]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[24]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[25]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[26]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[27]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[28]  Yanheng Ding,et al.  Periodic solutions of a Dirac equation with concave and convex nonlinearities , 1999 .

[29]  J. Schwartz Nonlinear Functional Analysis , 1969 .

[30]  Sergei Kuksin,et al.  Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum , 1987 .

[31]  Xiaoping Yuan,et al.  Quasi-periodic solutions of completely resonant nonlinear wave equations ✩ , 2006 .

[32]  B. Lidskii,et al.  Periodic solutions of the equation utt — uxx + u3 = 0 , 1988 .

[33]  I. Ekeland Convexity Methods In Hamiltonian Mechanics , 1990 .

[34]  H. Amann,et al.  Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations , 1980 .

[35]  P. Rabinowitz,et al.  Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems , 1977 .

[36]  Antonio Ambrosetti,et al.  Nonlinear Analysis and Semilinear Elliptic Problems , 2007 .

[37]  Walter Craig,et al.  Numerical simulation of gravity waves , 1993 .

[38]  F. Sergeraert Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications , 1972 .

[39]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[40]  Alan Weinstein,et al.  Periodic Orbits for Convex Hamiltonian Systems , 1978 .

[41]  Luca Biasco,et al.  Time Periodic Solutions for the Nonlinear Wave Equation with Long Minimal Period , 2006, SIAM J. Math. Anal..

[42]  Louis Nirenberg,et al.  Topics in Nonlinear Functional Analysis , 2001 .

[43]  M. Willem Density of the Range of Potential-operators , 1981 .

[44]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[45]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[46]  Periodic solutions of wave equations for asymptotically full measure sets of frequencies , 2005, math/0512053.

[47]  P. Rabinowitz Time periodic solutions of nonlinear wave equations , 1971 .

[48]  T. Bartsch A generalization of the Weinstein-Moser theorems on periodic orbits of a hamiltonian system near an equilibrium , 1997 .

[49]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[50]  Haim Brezis,et al.  Remarks on finding critical points , 1991 .

[51]  J. Moser,et al.  A NEW TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Alan Weinstein,et al.  Normal modes for nonlinear hamiltonian systems , 1973 .

[53]  Dario Bambusi,et al.  Families of Periodic Solutions of Resonant PDEs , 2001, J. Nonlinear Sci..

[54]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[55]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[56]  Jürgen Moser,et al.  Periodic orbits near an equilibrium and a theorem by Alan Weinstein , 1976 .

[57]  Haim Brezis,et al.  Periodic solutions of nonlinear vibrating strings and duality principles , 1983 .

[58]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[59]  Guido Gentile,et al.  Conservation of Resonant Periodic Solutions for the One-Dimensional Nonlinear Schrödinger Equation , 2006 .

[60]  L. Hörmander,et al.  The boundary problems of physical geodesy , 1976 .

[61]  K. Deimling Nonlinear functional analysis , 1985 .

[62]  S. B. Kuksin Analysis of Hamiltonian PDEs , 2000 .

[63]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[64]  E. Valdinoci,et al.  Periodic Orbits Close to Elliptic Tori and Applications to the Three-body Problem , 2003, math/0304103.

[65]  P. Rabinowitz A bifurcation theorem for potential operators , 1977 .

[66]  A. Ambrosetti,et al.  Homoclinics: Poincaré-Melnikov type results via a variational approach , 1998 .

[67]  M. Gromov SMOOTHING AND INVERSION OF DIFFERENTIAL OPERATORS , 1972 .

[68]  L. Biasco,et al.  Periodic solutions of nonlinear wave equations with non-monotone forcing terms , 2005 .

[69]  J. Pöschel,et al.  Quasi-periodic solutions for a nonlinear wave equation , 1996 .

[70]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[71]  M. Berti,et al.  Multiplicity of periodic solutions of nonlinear wave equations , 2004 .

[72]  P. Rabinowitz,et al.  Periodic Solutions of Nonlinear Hyperbolie Partial Differential Equations , 1967 .

[73]  Eduard Zehnder,et al.  Symplectic Invariants and Hamiltonian Dynamics , 1994 .

[74]  S. Smale,et al.  A generalized Morse theory , 1964 .

[75]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .

[76]  M. Berti,et al.  Cantor families of periodic solutions for wave equations via a variational principle , 2008 .

[77]  J. T. Beale,et al.  The existence of solitary water waves , 1977 .

[78]  J. Mawhin,et al.  Diophantine approximation, Bessel functions and radially symmetric periodic solutions of semilinear wave equations in a ball , 2001 .

[79]  J. Bourgain Construction of periodic solutions of nonlinear wave equations in higher dimension , 1995 .

[80]  P. Lax Outline of a theory of the KdV equation , 1996 .

[81]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[82]  J. Moser Addendum to “periodic orbits near an equilibrium and a theorem by alan weinstein” , 1978 .

[83]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[84]  M. Procesi QUASI-PERIODIC SOLUTIONS FOR COMPLETELY RESONANT NON-LINEAR WAVE EQUATIONS IN 1D AND 2D , 2005 .

[85]  Massimiliano Berti,et al.  Periodic Solutions of Nonlinear Wave Equations with General Nonlinearities , 2002, math/0211310.

[86]  A stability theorem for the obstacle problem , 1975 .

[87]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[88]  Cantor families of periodic solutions for completely resonant nonlinear wave equations , 2004, math/0410618.

[89]  C. Eugene Wayne,et al.  Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .

[90]  Paul H. Rabinowitz,et al.  Periodic solutions of hamiltonian systems , 1978 .

[91]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[92]  Jean-Marcel Fokam Forced Vibrations via Nash-Moser Iteration , 2008 .

[93]  A. Ambrosetti Critical points and nonlinear variational problems , 1992 .

[94]  Michela Procesi,et al.  Quasi-Periodic Solutions of Completely Resonant Forced Wave Equations , 2005, math/0504406.

[95]  Jean Bourgain,et al.  Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE , 1994 .