Model-Free Data-Driven Inelasticity

We extend the Data-Driven formulation of problems in elasticity of Kirchdoerfer and Ortiz (2016) to inelasticity. This extension differs fundamentally from Data-Driven problems in elasticity in that the material data set evolves in time as a consequence of the history dependence of the material. We investigate three representational paradigms for the evolving material data sets: (i) materials with memory, i. e., conditioning the material data set to the past history of deformation; (ii) differential materials, i. e., conditioning the material data set to short histories of stress and strain; and (iii) history variables, i. e., conditioning the material data set to ad hoc variables encoding partial information about the history of stress and strain. We also consider combinations of the three paradigms thereof and investigate their ability to represent the evolving data sets of different classes of inelastic materials, including viscoelasticity, viscoplasticity and plasticity. We present selected numerical examples that demonstrate the range and scope of Data-Driven inelasticity and the numerical performance of implementations thereof.

[1]  K. C. Valanis,et al.  Entropy, Fading Memory and Onsager's Relations , 1967 .

[2]  Walter Noll,et al.  Foundations of Linear Viscoelasticity , 1961 .

[3]  Ronald S. Rivlin,et al.  Materials with Memory , 1973 .

[4]  Manuel Doblaré,et al.  A new reliability-based data-driven approach for noisy experimental data with physical constraints , 2018 .

[5]  Laurent Stainier,et al.  Computational measurements of stress fields from digital images , 2018 .

[6]  J. Meixner,et al.  Die thermodynamische Theorie der Relaxationserscheinungen und ihr Zusammenhang mit der Nachwirkungstheorie , 1953 .

[7]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[8]  Ronald S. Rivlin,et al.  The mechanics of non-linear materials with memory , 1959 .

[9]  Stefanie Reese,et al.  On the modelling of non‐linear kinematic hardening at finite strains with application to springback—Comparison of time integration algorithms , 2008 .

[10]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[11]  J. Lubliner On the thermodynamic foundations of non-linear solid mechanics , 1972 .

[12]  S. Conti,et al.  Data-Driven Problems in Elasticity , 2017, 1708.02880.

[13]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[14]  Richard Schapery,et al.  Application of Thermodynamics to Thermomechanical, Fracture, and Birefringent Phenomena in Viscoelastic Media , 1964 .

[15]  Byung Chan Eu,et al.  Thermodynamics of Irreversible Processes , 1995 .

[16]  R. S. Rivlin,et al.  The mechanics of non-linear materials with memory , 1957 .

[17]  C. C. Wang,et al.  The principle of fading memory , 1965 .

[18]  Carl Eckart,et al.  The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity , 1948 .

[19]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[20]  Laurent Stainier,et al.  Data-based derivation of material response , 2018 .

[21]  C. C. Wang,et al.  Stress relaxation and the principle of fading memory , 1965 .

[22]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[23]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[24]  Trenton Kirchdoerfer,et al.  Data‐driven computing in dynamics , 2017, 1706.04061.

[25]  H. Ziegler,et al.  An attempt to generalize Onsager's principle, and its significance for rheological problems , 1958 .

[26]  J. Rice,et al.  PARADOXES IN THE APPLICATION OF THERMODYNAMICS TO STRAINED SOLIDS. , 1969 .

[27]  K. C. Valanis,et al.  Thermodynamics of Large Viscoelastic Deformations , 1966 .

[28]  Maurice A. Biot,et al.  Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena , 1954 .

[29]  R. Rivlin,et al.  Stress-Deformation Relations for Isotropic Materials , 1955 .

[30]  Trenton Kirchdoerfer,et al.  Data Driven Computing with Noisy Material Data Sets , 2017, 1702.01574.

[31]  Jacob Lubliner,et al.  On fading memory in materials of evolutionary type , 1969 .

[32]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[33]  Paris Perdikaris,et al.  Inferring solutions of differential equations using noisy multi-fidelity data , 2016, J. Comput. Phys..

[34]  David G. Stork,et al.  Pattern Classification , 1973 .

[35]  Jacob Lubliner,et al.  On the structure of the rate equations of materials with internal variables , 1973 .

[36]  Ronald S. Rivlin,et al.  Small deformations superposed on large deformations in materials with fading memory , 1961 .

[37]  A. R. Newman Confidence, pedigree, and security classification for improved data fusion , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[38]  Trenton Kirchdoerfer,et al.  Data-driven computational mechanics , 2015, 1510.04232.

[39]  Walter Noll,et al.  RECENT RESULTS IN THE CONTINUUM THEORY OF VISCOELASTIC FLUIDS * , 1961 .

[40]  W. A. Day The Thermodynamics of Materials with Memory , 2010 .

[41]  Michael Ortiz,et al.  A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems , 2008 .

[42]  Marc-André Keip,et al.  A data-driven approach to nonlinear elasticity , 2018 .