Monge matrices make maximization manageable
暂无分享,去创建一个
Gerhard J. Woeginger | Ulrich Pferschy | Rüdiger Rudolf | G. Woeginger | Rüdiger Rudolf | Ulrich Pferschy
[1] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.
[2] F. Supnick,et al. Extreme Hamiltonian Lines , 1957 .
[3] Jacobus Antonius Adelbertus van der Veen. Solvable cases of the traveling salesman problem with various objective functions , 1992 .
[4] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[5] L. Larmore,et al. The d-edge shortest-path problem for a Monge graph , 1992 .
[6] James K. Park. A Special Case of the n-Vertex Traveling-Salesman Problem that can be Solved in O(n) Time , 1991, Inf. Process. Lett..
[7] R. Burkard. SPECIAL CASES OF TRAVELLING SALESMAN PROBLEMS AND HEURISTICS , 1990 .
[8] David S. Johnson. The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.
[9] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.
[10] Peter Brucker,et al. Applications of an algebraic Monge property , 1993 .
[11] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[12] Eugene L. Lawler,et al. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .
[13] Alok Aggarwal,et al. Finding a minimum weight K-link path in graphs with Monge property and applications , 1993, SCG '93.